Patents by Inventor Isabelle Banville

Isabelle Banville has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20180303367
    Abstract: The system and method provide for electrocardiogram analysis and optimization of patient-customized cardiopulmonary resuscitation and therapy delivery. An external medical device includes a housing and a processor within the housing. The processor can be configured to receive an input signal for a patient receiving chest compressions and to select at least one filter mechanism and to apply the filter mechanism to the signal to at least substantially remove chest compression artifacts from the signal. A real time dynamic analysis of a cardiac rhythm is applied to adjust and integrate CPR prompting of a medical device. Real-time cardiac rhythm quality is facilitated using a rhythm assessment meter.
    Type: Application
    Filed: October 27, 2017
    Publication date: October 25, 2018
    Inventors: Joseph L. Sullivan, Ronald E. Stickney, Robert G. Walker, Daniel Piraino, Isabelle Banville, Fred W. Chapman
  • Publication number: 20180289275
    Abstract: Patient electrodes, patient monitors, defibrillators, wearable defibrillators, software and methods may warn when an electrode stops being fully attached to the patient's skin. A patient electrode includes a pad for attaching to the skin of a patient, a lead coupled to the pad, and a contact detector that can change state, when the pad does not contact fully the skin of the patient. When the detector changes state, an output device may emit an alert, for notifying a rescuer or even the patient.
    Type: Application
    Filed: June 8, 2018
    Publication date: October 11, 2018
    Inventors: Blaine Krusor, Isabelle Banville, Joseph Leo Sullivan, David Peter Finch, Daniel Ralph Piha, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Carmen Ann Chacon, Gregory T. Kavounas
  • Publication number: 20180272146
    Abstract: An external defibrillator can have a synchronous shock operating mode and an asynchronous shock operating mode and include a controller to set the defibrillator in the synchronous shock operating mode or the asynchronous shock operating mode. The defibrillator can also include a shock module to cause the defibrillator to deliver shock therapy to the patient according to the operating mode of the defibrillator, and a prompt module to transmit a prompt, after delivery of the shock therapy, that includes the operating mode of the defibrillator.
    Type: Application
    Filed: May 25, 2018
    Publication date: September 27, 2018
    Inventors: Robert G. Walker, Fred W. Chapman, Isabelle Banville
  • Publication number: 20180272148
    Abstract: The defibrillator may include a heart rhythm detector to detect the heart rhythm of a patient, a manual mode controller structured to set the defibrillator in a synchronous shock operating mode or an asynchronous shock operating mode depending on an input from a human operator, a shock module to cause the defibrillator to deliver a shock to the patient according to the operating mode, and an automatic mode controller structured to, after the shock module has delivered the shock to the patient, set the external defibrillator to the synchronous shock operating mode or the asynchronous shock operating mode depending on the detected heart rhythm of the patient and without input from the human operator.
    Type: Application
    Filed: May 25, 2018
    Publication date: September 27, 2018
    Inventors: Robert G. Walker, Fred W. Chapman, Isabelle Banville, James W. Taylor
  • Patent number: 10046170
    Abstract: Methods and apparatus are provided for determining a defibrillation treatment protocol in an external defibrillator whereby a user may override a CPR-first default protocol. The method includes following steps configured in a defibrillator controller of issuing an inquiry; waiting for a response to the inquiry for a set time; ordering a CPR treatment protocol if no response is received within the set time; analyzing a response; ordering a CPR treatment protocol upon receiving a non-affirmative response to the inquiry; and ordering a shock treatment protocol upon receiving an affirmative response to the inquiry. Upon selecting a shock treatment protocol, the defibrillator performs a shock analysis under the shock treatment protocol, and either orders a CPR treatment protocol if shock treatment is not indicated by the shock analysis or provides a defibrillation shock if shock treatment is indicated by the shock analysis. Queries may be presented to a user in visual, audible, or both visual and audible format.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: August 14, 2018
    Assignee: PHYSIO-CONTROL, INC.
    Inventors: Isabelle Banville, David R. Hampton, Gregory T. Kavounas, Richard C. Nova
  • Patent number: 10022062
    Abstract: Patient electrodes, patient monitors, defibrillators, wearable defibrillators, software and methods may warn when an electrode stops being fully attached to the patient's skin. A patient electrode includes a pad for attaching to the skin of a patient, a lead coupled to the pad, and a contact detector that can change state, when the pad does not contact fully the skin of the patient. When the detector changes state, an output device may emit an alert, for notifying a rescuer or even the patient.
    Type: Grant
    Filed: February 14, 2017
    Date of Patent: July 17, 2018
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Blaine Krusor, Isabelle Banville, Joseph Leo Sullivan, David Peter Finch, Daniel Ralph Piha, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Carmen Ann Chacon, Gregory T. Kavounas
  • Patent number: 9987496
    Abstract: A wearable medical device includes a garment and a medical device. The medical device has a functionality that can transition between an operative state and an inoperative state. When the functionality is in the inoperative state, a protrusion extends so as to poke the patient, as an indication that steps need to be taken to make the device ready for use.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: June 5, 2018
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Joseph Leo Sullivan, Isabelle Banville, Blaine Krusor, Daniel Ralph Piha, Laura Marie Gustavson, David Peter Finch, Kenneth Frederick Cowan, Richard C. Nova
  • Publication number: 20180147414
    Abstract: In embodiments, a wearable cardiac defibrillator system includes an energy storage module configured to store a charge. Two electrodes can be configured to be applied to respective locations of a patient. One or more reservoirs can store one or more conductive fluids. Respective fluid deploying mechanisms can be configured to cause the fluids to be released from one or more of the reservoirs, which decreases the impedance at the patient location, and decreases discomfort for the patient. In some embodiments an impedance is sensed between the two electrodes, and the stored charge is delivered when the sensed impedance meets a discharge condition. In some embodiments, different fluids are released for different patient treatments. In some embodiments, fluid release is controlled to be in at least two doses, with an intervening pause.
    Type: Application
    Filed: January 9, 2018
    Publication date: May 31, 2018
    Inventors: Daniel Ralph Piha, Joseph Leo Sullivan, Phillip Dewey Foshee, JR., Daniel Peter Finch, Isabelle Banville, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Robert Reuben Buchanan, Krystyna Szul, Gregory T. Kavounas
  • Patent number: 9981141
    Abstract: The defibrillator may include a heart rhythm detector to detect the heart rhythm of a patient, a manual mode controller structured to set the defibrillator in a synchronous shock operating mode or an asynchronous shock operating mode depending on an input from a human operator, a shock module to cause the defibrillator to deliver a shock to the patient according to the operating mode, and an automatic mode controller structured to, after the shock module has delivered the shock to the patient, set the external defibrillator to the synchronous shock operating mode or the asynchronous shock operating mode depending on the detected heart rhythm of the patient and without input from the human operator.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: May 29, 2018
    Assignee: Physio-Control, Inc.
    Inventors: Robert G. Walker, Fred W. Chapman, Isabelle Banville, James W. Taylor
  • Patent number: 9981140
    Abstract: An external defibrillator can have a synchronous shock operating mode and an asynchronous shock operating mode and include a controller to set the defibrillator in the synchronous shock operating mode or the asynchronous shock operating mode. The defibrillator can also include a shock module to cause the defibrillator to deliver shock therapy to the patient according to the operating mode of the defibrillator, and a prompt module to transmit a prompt, after delivery of the shock therapy, that includes the operating mode of the defibrillator.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: May 29, 2018
    Assignee: Physio-Control, Inc.
    Inventors: Robert G. Walker, Fred W. Chapman, Isabelle Banville
  • Publication number: 20180110995
    Abstract: A wearable cardiac defibrillator (“WCD”) system may include a support structure that a patient can wear, an energy storage module that can store an electrical charge, and a discharge circuit that can discharge the electrical charge through the patient so as to shock him or her, while the patient is wearing the support structure. Embodiments may actively take into account bystanders, both to protect them from an inadvertent shock, and also to enlist their help. In some embodiments the WCD system includes a speaker system that transmits a sound designed to assist a bystander to perform CPR. Optionally CPR chest compressions received by the patient can be further detected, and feedback can be given. In embodiments, a WCD system may include a user interface that can be controlled to output CPR prompts tailored to a skill level of the bystander.
    Type: Application
    Filed: December 12, 2017
    Publication date: April 26, 2018
    Inventors: Joseph L. Sullivan, David Peter Finch, Phillip Dewey Foshee, JR., Isabelle Banville, Richard C. Nova, Krystyna Szul, Daniel Finney, Laura Marie Gustavson, Gregory T. Kavounas
  • Publication number: 20180110994
    Abstract: A wearable cardiac defibrillator (“WCD”) system may include a support structure that a patient can wear, an energy storage module that can store an electrical charge, and a discharge circuit that can discharge the electrical charge through the patient so as to shock him or her, while the patient is wearing the support structure. Embodiments may actively take into account bystanders, both to protect them from an inadvertent shock, and also to enlist their help. In some embodiments, the WCD system includes a speaker system and a memory. Prompts have been saved in advance in the patient's own voice, and stored in the memory. In case of an emergency, the prompts may be played by the speaker system in the patient's own voice, and heard by a bystander.
    Type: Application
    Filed: December 12, 2017
    Publication date: April 26, 2018
    Inventors: Joseph L. Sullivan, David Peter Finch, Phillip Dewey Foshee, JR., Isabelle Banville, Richard C. Nova, Krystyna Szul, Daniel Finney, Laura Marie Gustavson, Gregory T. Kavounas
  • Patent number: 9950184
    Abstract: A wearable cardiac defibrillator (“WCD”) system may include a support structure that a patient can wear, an energy storage module that can store an electrical charge, and a discharge circuit that can discharge the electrical charge through the patient so as to shock him or her, while the patient is wearing the support structure. Embodiments may actively take into account bystanders, both to protect them from an inadvertent shock, and also to enlist their help. In some embodiments, the WCD system includes a speaker system, a memory and a proximity detector. Prompts have been stored in the memory. In case of an emergency, upon inferring that no bystander is nearby, the speaker system may transmit a sound at a higher intensity than otherwise, hoping to attract attention.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: April 24, 2018
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Joseph L. Sullivan, David Peter Finch, Phillip Dewey Foshee, Jr., Isabelle Banville, Richard C. Nova, Krystyna Szul, Daniel Finney, Laura Marie Gustavson, Gregory T. Kavounas
  • Patent number: 9895548
    Abstract: In embodiments, a wearable cardiac defibrillator system includes an energy storage module configured to store a charge. Two electrodes can be configured to be applied to respective locations of a patient. One or more reservoirs can store one or more conductive fluids. Respective fluid deploying mechanisms can be configured to cause the fluids to be released from one or more of the reservoirs, which decreases the impedance at the patient location, and decreases discomfort for the patient. In some embodiments an impedance is sensed between the two electrodes, and the stored charge is delivered when the sensed impedance meets a discharge condition. In some embodiments, different fluids are released for different patient treatments. In some embodiments, fluid release is controlled to be in at least two doses, with an intervening pause.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: February 20, 2018
    Inventors: Daniel Ralph Piha, Joseph Leo Sullivan, Phillip Dewey Foshee, Jr., Daniel Peter Finch, Isabelle Banville, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Robert Reuben Buchanan, Krystyna Szul, Gregory T. Kavounas
  • Patent number: 9878173
    Abstract: A wearable cardiac defibrillator (“WCD”) system may include a support structure that a patient can wear, an energy storage module that can store an electrical charge, and a discharge circuit that can discharge the electrical charge through the patient so as to shock him or her, while the patient is wearing the support structure. Embodiments may actively take into account bystanders, both to protect them from an inadvertent shock, and also to enlist their help. In some embodiments the WCD system includes a microphone. The WCD system might be ready to deliver a shock, but may first wait before doing so until it hears from a bystander a preset ready word, such as: “CLEAR”.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: January 30, 2018
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Joseph L. Sullivan, David Peter Finch, Phillip Dewey Foshee, Jr., Isabelle Banville, Richard C. Nova, Krystyna Szul, Daniel Finney, Laura Marie Gustavson, Gregory T. Kavounas
  • Publication number: 20170368361
    Abstract: A wearable medical device includes a garment and a medical device. The medical device has a functionality that can transition between an operative state and an inoperative state. When the functionality is in the inoperative state, a protrusion extends so as to poke the patient, as an indication that steps need to be taken to make the device ready for use.
    Type: Application
    Filed: August 8, 2017
    Publication date: December 28, 2017
    Inventors: Joseph Leo Sullivan, Isabelle Banville, Blaine Krusor, Daniel Ralph Piha, Laura Marie Gustavson, David Peter Finch, Kenneth Frederick Cowan, Richard C. Nova
  • Patent number: 9827435
    Abstract: An external defibrillator, such as a wearable defibrillator can have a heart rhythm detector to detect the heart rhythm of a patient. The defibrillator can also have a synchronous shock operating mode and an asynchronous shock operating mode. A controller can set the defibrillator in the synchronous shock operating mode or the asynchronous shock operating mode. The defibrillator can also include a shock module to cause the defibrillator to deliver shock therapy to the patient according to the operating mode of the defibrillator and a sync module configured to identify a first portion of the heart rhythm detected from a first ECG lead with which to time the delivery of the shock therapy to the patient when the operating mode of the defibrillator is in synchronous shock operating mode. A comparator module can compare timing of a QRS complex detected from the first ECG lead with the timing of the QRS complex detected by the second EGG lead.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: November 28, 2017
    Inventors: Robert G. Walker, Fred W. Chapman, Isabelle Banville
  • Patent number: 9801561
    Abstract: The system and method provide for electrocardiogram analysis and optimization of patient-customized cardiopulmonary resuscitation and therapy delivery. An external medical device includes a housing and a processor within the housing. The processor can be configured to receive an input signal for a patient receiving chest compressions and to select at least one filter mechanism and to apply the filter mechanism to the signal to at least substantially remove chest compression artifacts from the signal. A real time dynamic analysis of a cardiac rhythm is applied to adjust and integrate CPR prompting of a medical device. Real-time cardiac rhythm quality is facilitated using a rhythm assessment meter.
    Type: Grant
    Filed: December 30, 2016
    Date of Patent: October 31, 2017
    Assignee: Physio-Control, Inc.
    Inventors: Joseph L. Sullivan, Ronald Eugene Stickney, Robert G. Walker, Daniel Piraino, Isabelle Banville, Fred Chapman
  • Patent number: 9795782
    Abstract: RFID-based sensors, RFID readers and software sense a changed condition. In one embodiment, an RFID-based sensor includes a base that may be placed at a location where a condition may change. The sensor includes an RFID tag that is coupled to the base. The sensor also includes a detector that can be electrically coupled to the RFID tag. If the condition changes, an electrical property of the detector also changes, impacting an operation of the RFID tag. The impacted operation can be detected by an RFID reader/interrogator so as to provide a notification. An advantage over the prior art is that the condition change can be sensed wirelessly over a domain that can be laborious or hazardous to access otherwise. Moreover, RFID based sensors can be made by modifying common RFID tags.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: October 24, 2017
    Assignee: WEST AFFUM HOLDINGS CORP.
    Inventors: Blaine Krusor, Isabelle Banville, Joseph Leo Sullivan, David Peter Finch, Daniel Ralph Piha, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Carmen Ann Chacon, Gregory T. Kavounas
  • Publication number: 20170266456
    Abstract: In embodiments, a wearable cardiac defibrillator system includes an energy storage module configured to store a charge. Two electrodes can be configured to be applied to respective locations of a patient. One or more reservoirs can store one or more conductive fluids. Respective fluid deploying mechanisms can be configured to cause the fluids to be released from one or more of the reservoirs, which decreases the impedance at the patient location, and decreases discomfort for the patient. In some embodiments an impedance is sensed between the two electrodes, and the stored charge is delivered when the sensed impedance meets a discharge condition. In some embodiments, different fluids are released for different patient treatments. In some embodiments, fluid release is controlled to be in at least two doses, with an intervening pause.
    Type: Application
    Filed: June 6, 2017
    Publication date: September 21, 2017
    Inventors: Daniel Ralph Piha, Joseph Leo Sullivan, Phillip Dewey Foshee, JR., Daniel Peter Finch, Isabelle Banville, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Robert Reuben Buchanan, Krystyna Szul, Gregory T. Kavounas