Patents by Inventor Isabelle Banville

Isabelle Banville has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8731658
    Abstract: An external defibrillator system is disclosed that generates and applies a diagnostic signal to the patient in conjunction with defibrillation therapy. The diagnostic signal is designed to elicit a physiologic response from the patient's heart, namely, mechanical cardiac response and electrical cardiac response, electrical cardiac response only, or no cardiac response. Depending upon the type of cardiac response detected, the system selects an appropriate resuscitation protocol that considers the likely responsiveness of the patient to defibrillation therapy. In one practical embodiment, a stimulus signal is applied to patients that show mechanical and electrical capture in response to the diagnostic signal. The stimulus signal maintains the mechanical capture (and, therefore, perfusion) for a period of time prior to the delivery of a defibrillation pulse.
    Type: Grant
    Filed: January 31, 2005
    Date of Patent: May 20, 2014
    Assignee: Physio-Control, Inc
    Inventors: David R. Hampton, Isabelle Banville
  • Publication number: 20140107541
    Abstract: The system and method provide for electrocardiogram analysis and optimization of patient-customized cardiopulmonary resuscitation and therapy delivery. An external medical device includes a housing and a processor within the housing. The processor can be configured to receive an input signal for a patient receiving chest compressions and to select at least one filter mechanism and to apply the filter mechanism to the signal to at least substantially remove chest compression artifacts from the signal. A real time dynamic analysis of a cardiac rhythm is applied to adjust and integrate CPR prompting of a medical device. Real-time cardiac rhythm quality is facilitated using a rhythm assessment meter.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 17, 2014
    Inventors: Joseph L. Sullivan, Ronald Eugene Stickney, Robert G. Walker, Daniel Piraino, Isabelle Banville, Fred Chapman
  • Publication number: 20140094869
    Abstract: An external defibrillator may have a controller to set the defibrillator in a synchronous shock operating mode or an asynchronous shock operating mode, a shock module to cause the defibrillator to deliver shock therapy to a patient according to the present operating mode of the defibrillator, and a heart rhythm detector to detect a heart rhythm of the patient. The defibrillator may also have a mode assessment module to determine whether the present operating mode or selected defibrillation energy of the defibrillator is appropriate based on the detected heart rhythm of the patient.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 3, 2014
    Applicant: Physio-Control, Inc.
    Inventors: Robert G. Walker, Fred W. Chapman, Isabelle Banville
  • Publication number: 20140094867
    Abstract: An external defibrillator, such as a wearable defibrillator can have a heart rhythm detector to detect the heart rhythm of a patient. The defibrillator can also have a synchronous shock operating mode and an asynchronous shock operating mode. A controller can set the defibrillator in the synchronous shock operating mode or the asynchronous shock operating mode. The defibrillator can also include a shock module to cause the defibrillator to deliver shock therapy to the patient according to the operating mode of the defibrillator and a sync module configured to identify a first portion of the heart rhythm detected from a first ECG lead with which to time the delivery of the shock therapy to the patient when the operating mode of the defibrillator is in synchronous shock operating mode. A comparator module can compare timing of a QRS complex detected from the first ECG lead with the timing of the QRS complex detected by the second EGG lead.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 3, 2014
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Robert G. Walker, Fred W. Chapman, Isabelle Banville
  • Publication number: 20140094866
    Abstract: The defibrillator may include a heart rhythm detector to detect the heart rhythm of a patient, a manual mode controller structured to set the defibrillator in a synchronous shock operating mode or an asynchronous shock operating mode depending on an input from a human operator, a shock module to cause the defibrillator to deliver a shock to the patient according to the operating mode, and an automatic mode controller structured to, after the shock module has delivered the shock to the patient, set the external defibrillator to the synchronous shock operating mode or the asynchronous shock operating mode depending on the detected heart rhythm of the patient and without input from the human operator.
    Type: Application
    Filed: March 15, 2013
    Publication date: April 3, 2014
    Applicant: Physio-Control, Inc.
    Inventors: Robert G. Walker, Fred W. Chapman, Isabelle Banville, James W. Taylor
  • Publication number: 20140094865
    Abstract: An external defibrillator can have a synchronous shock operating mode and an asynchronous shock operating mode and include a controller to set the defibrillator in the synchronous shock operating mode or the asynchronous shock operating mode. The defibrillator can also include a shock module to cause the defibrillator to deliver shock therapy to the patient according to the operating mode of the defibrillator, and a prompt module to transmit a prompt, after delivery of the shock therapy, that includes the operating mode of the defibrillator.
    Type: Application
    Filed: September 30, 2013
    Publication date: April 3, 2014
    Applicant: Physio-Control, Inc.
    Inventors: Robert G. Walker, Fred W. Chapman, Isabelle Banville
  • Publication number: 20140088660
    Abstract: In one embodiment, a wearable defibrillation system may sense whether its wearer meets an unconscious bradyarrhythmia condition that can be associated with becoming unconscious. Even though such a condition might not be helped with a defibrillation pulse, the wearable-defibrillation system may still administer pacing pulses to prevent the bradycardia from becoming worse, such as a sudden cardiac arrest. In some embodiments, the pacing pulses are administered at a frequency too slow for the patient to regain consciousness. An advantage is that, because the patient remains unconscious, he does not experience the sometimes severe discomfort due to the pacing pulses.
    Type: Application
    Filed: September 17, 2013
    Publication date: March 27, 2014
    Applicant: Physio-Control, Inc.
    Inventors: Gary Debardi, Isabelle Banville, Ronald Eugene Stickney
  • Publication number: 20140051962
    Abstract: Patient electrodes, patient monitors, defibrillators, wearable defibrillators, software and methods may warn when an electrode stops being fully attached to the patient's skin. A patient electrode includes a pad for attaching to the skin of a patient, a lead coupled to the pad, and a contact detector that can change state, when the pad does not contact fully the skin of the patient. When the detector changes state, an output device may emit an alert, for notifying a rescuer or even the patient.
    Type: Application
    Filed: October 28, 2013
    Publication date: February 20, 2014
    Applicant: Physio-Control, Inc.
    Inventors: Blaine Krusor, Isabelle Banville, Joseph Leo Sullivan, David Peter Finch, Daniel Ralph Piha, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Carmen Ann Chacon, Gregory T. Kavounas
  • Publication number: 20140049377
    Abstract: RFID-based sensors, RFID readers and software sense a changed condition. In one embodiment, an RFID-based sensor includes a base that may be placed at a location where a condition may change. The sensor includes an RFID tag that is coupled to the base. The sensor also includes a detector that can be electrically coupled to the RFID tag. If the condition changes, an electrical property of the detector also changes, impacting an operation of the RFID tag. The impacted operation can be detected by an RFID reader/interrogator so as to provide a notification. An advantage over the prior art is that the condition change can be sensed wirelessly over a domain that can be laborious or hazardous to access otherwise. Moreover, RFID based sensors can be made by modifying common RFID tags.
    Type: Application
    Filed: October 28, 2013
    Publication date: February 20, 2014
    Applicant: Physio-Control, Inc.
    Inventors: Blaine Krusor, Isabelle Banville, Joseph Leo Sullivan, David Peter Finch, Daniel Ralph Piha, Laura Marie Gustavson, Kenneth Frederick Cowan, Richard C. Nova, Carmen Ann Chacon, Gregory T. Kavounas
  • Publication number: 20140046391
    Abstract: A wearable defibrillation system can establish a local comlink with a mobile communication device, such as a smartphone, tablet-type computer and the like. The mobile communication device can in turn establish a remote comlink with other devices in a network such as the internet. Accordingly, communication tasks relating to the wearable defibrillation system can be performed via the local and the remote comlinks, with or without the participation of the patient, who is wearing the system. The wearer can thus use the familiar interface of a mobile communication device for interacting with his defibrillator system. Moreover, he can do so while keeping on his regular clothes, which could conceal completely the wearable defibrillator system. The patient can thus preserve his dignity and privacy.
    Type: Application
    Filed: August 6, 2013
    Publication date: February 13, 2014
    Applicant: Physio-Control, Inc.
    Inventors: Kenneth Frederick Cowan, Isabelle Banville, Robert Reuben Buchanan, David Peter Finch, Joseph Leo Sullivan, Phillip D. Foshee, JR., Laura Marie Gustavson, Daniel Ralph Piha, Carmen Ann Chacon, Blaine Krusor, Gary Debardi, Richard C. Nova, Krystyna Szul, Gregory T. Kavounas
  • Publication number: 20140047314
    Abstract: Embodiments operate in contexts where field data have been generated from a field event, and annotations have been generated from the field data, which purport to identify events within the field data, such as CPR compressions and ventilations. Metrics are generated from the annotations, which are used in training. In such contexts, a grade may be assigned that reflects how well the annotations meet one or more accuracy criteria. The grade may be used in a number of ways. Reviewers may opt to disregard field data and metrics that have a low grade. Expert annotators may be guided as to precisely which annotations to revise, saving time. A low grade may decide that the results are not emailed to reviewers, but to annotators. A learning medical device can use the grade internally to adjust its own internal parameters so as to improve its annotating algorithms.
    Type: Application
    Filed: August 12, 2013
    Publication date: February 13, 2014
    Applicant: Physio-Control, Inc
    Inventors: Alexander Esibov, Isabelle Banville, Robert Marx, Fred Chapman, Randy Merry
  • Publication number: 20140043149
    Abstract: A mobile communication device such as a smartphone or a tablet-type computer, can establish a local comlink with a wearable defibrillation system. At the same time, the mobile communication device can establish a remote comlink with other devices in a network such as the internet. Accordingly, communication tasks relating to the wearable defibrillation system can be performed via the local and the remote comlinks, with or without the participation of the patient, who is wearing the system. The patient can thus use the familiar interface of a mobile communication device for interacting with his defibrillator system. Moreover, he can do so while keeping on his regular clothes, which could conceal completely the wearable defibrillator system. The patient can thus preserve his dignity and privacy.
    Type: Application
    Filed: August 6, 2013
    Publication date: February 13, 2014
    Applicant: Physio-Control, Inc
    Inventors: Kenneth Frederick Cowan, Isabelle Banville, Robert Reuben Buchanan, David Peter Finch, Joseph Leo Sullivan, Phillip D. Foshee, JR., Laura Marie Gustavson, Daniel Ralph Piha, Carmen Ann Chacon, Blaine Krusor, Gary Debardi, Richard C. Nova, Krystyna Szul, Gregory T. Kavounas
  • Publication number: 20130304143
    Abstract: An external medical device can include a medical data collection port for collecting medical data corresponding to a person using the external medical device, a radio frequency identification (RFID) communication module, and a processor configured to cause the RFID communication module to provide the medical data to an RFID device that is external to the external medical device.
    Type: Application
    Filed: May 8, 2013
    Publication date: November 14, 2013
    Applicant: PHYSIO-CONTROL, INC.
    Inventor: Isabelle Banville
  • Publication number: 20130296747
    Abstract: During cardiopulmonary resuscitation (CPR), compressions are delivered to a patient. The CPR compression includes a depth of compression. A medical device uses radio frequency identification (RFID) technology to determine the depth of compression.
    Type: Application
    Filed: May 3, 2013
    Publication date: November 7, 2013
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Daniel Conan Perreault, Isabelle Banville, Gregory T. Kavounas, Robert P. Marx, Jr.
  • Publication number: 20110190836
    Abstract: Methods and apparatus are provided for determining a defibrillation treatment protocol in an external defibrillator whereby a user may override a CPR-first default protocol. The method includes following steps configured in a defibrillator controller of issuing an inquiry; waiting for a response to the inquiry for a set time; ordering a CPR treatment protocol if no response is received within the set time; analyzing a response; ordering a CPR treatment protocol upon receiving a non-affirmative response to the inquiry; and ordering a shock treatment protocol upon receiving an affirmative response to the inquiry. Upon selecting a shock treatment protocol, the defibrillator performs a shock analysis under the shock treatment protocol, and either orders a CPR treatment protocol if shock treatment is not indicated by the shock analysis or provides a defibrillation shock if shock treatment is indicated by the shock analysis. Queries may be presented to a user in visual, audible, or both visual and audible format.
    Type: Application
    Filed: April 12, 2011
    Publication date: August 4, 2011
    Applicant: PHYSIO-CONTROL, INC.
    Inventors: Isabelle Banville, David Robert Hampton, Gregory T. Kavounas, Richard C. Nova
  • Patent number: 7937146
    Abstract: Methods and apparatus are provided for determining a defibrillation treatment protocol in an external defibrillator whereby a user may override a CPR-first default protocol. The method includes following steps configured in a defibrillator controller of issuing an inquiry; waiting for a response to the inquiry for a set time; ordering a CPR treatment protocol if no response is received within the set time; analyzing a response; ordering a CPR treatment protocol upon receiving a non-affirmative response to the inquiry; and ordering a shock treatment protocol upon receiving an affirmative response to the inquiry. Upon selecting a shock treatment protocol, the defibrillator performs a shock analysis under the shock treatment protocol, and either orders a CPR treatment protocol if shock treatment is not indicated by the shock analysis or provides a defibrillation shock if shock treatment is indicated by the shock analysis. Queries may be presented to a user in visual, audible, or both visual and audible format.
    Type: Grant
    Filed: January 26, 2005
    Date of Patent: May 3, 2011
    Assignee: Physio-Control, Inc.
    Inventors: Isabelle Banville, David Robert Hampton, Gregory T. Kavounas, Richard C. Nova
  • Publication number: 20060173499
    Abstract: An external defibrillator system is disclosed that generates and applies a diagnostic signal to the patient in conjunction with defibrillation therapy. The diagnostic signal is designed to elicit a physiologic response from the patient's heart, namely, mechanical cardiac response and electrical cardiac response, electrical cardiac response only, or no cardiac response. Depending upon the type of cardiac response detected, the system selects an appropriate resuscitation protocol that considers the likely responsiveness of the patient to defibrillation therapy. In one practical embodiment, a stimulus signal is applied to patients that show mechanical and electrical capture in response to the diagnostic signal. The stimulus signal maintains the mechanical capture (and, therefore, perfusion) for a period of time prior to the delivery of a defibrillation pulse.
    Type: Application
    Filed: January 31, 2005
    Publication date: August 3, 2006
    Inventors: David Hampton, Isabelle Banville
  • Publication number: 20060173498
    Abstract: An external defibrillator used to treat a patient wirelessly communicates with an implantable medical device (IMD) implanted in the patient. In some embodiments, a telemetry head may be removably coupled to the external defibrillator to facilitate communication with the IMD. The defibrillator may receive information, such as patient, device, physiological, and treatment information, from the IMD. The defibrillator may use some or all of this information during treatment of the patient. For example, the defibrillator may prompt a user, or modify programmed user prompts based on the information. The defibrillator may deliver therapy based on the information. The information may include real-time values of physiological parameters monitored by the IMD, which may be displayed by the external defibrillator. The external defibrillator may control delivery of therapy by the IMD.
    Type: Application
    Filed: January 31, 2005
    Publication date: August 3, 2006
    Inventors: Isabelle Banville, Fred Chapman, Robert Walker, Joseph Sullivan, Richard Nova
  • Publication number: 20060167505
    Abstract: Methods and apparatus are provided for determining a defibrillation treatment protocol in an external defibrillator whereby a user may override a CPR-first default protocol. The method includes following steps configured in a defibrillator controller of issuing an inquiry; waiting for a response to the inquiry for a set time; ordering a CPR treatment protocol if no response is received within the set time; analyzing a response; ordering a CPR treatment protocol upon receiving a non-affirmative response to the inquiry; and ordering a shock treatment protocol upon receiving an affirmative response to the inquiry. Upon selecting a shock treatment protocol, the defibrillator performs a shock analysis under the shock treatment protocol, and either orders a CPR treatment protocol if shock treatment is not indicated by the shock analysis or provides a defibrillation shock if shock treatment is indicated by the shock analysis. Queries may be presented to a user in visual, audible, or both visual and audible format.
    Type: Application
    Filed: January 26, 2005
    Publication date: July 27, 2006
    Inventors: Isabelle Banville, David Hampton, Gregory Kavounas, Richard Nova
  • Patent number: 7047067
    Abstract: Methods, systems, and computer program products can be provided for evaluating a risk of the occurrence of cardiac arrhythmias in a heart. The system can include at least one sensing electrode and a controller. The sensing electrode can be configured to sense electrical signals from a heart over a range of heart rates. The controller can be configured to determine values of a at least one restitution property of the heart from the sensed electrical signals and to evaluate the risk of the occurrence of cardiac arrhythmias from the determine values of the at least one restitution property.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: May 16, 2006
    Assignee: UAB Research Foundation
    Inventors: Richard A. Gray, Xiaozhong Chen, Isabelle Banville