Patents by Inventor Itaru Yanagi

Itaru Yanagi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10712332
    Abstract: A solution tank device comprises: an insulating thin film, which is configured to allow an object to be measured to pass therethrough, and has a thickness of 1 micrometer or less; a first solution tank, which is configured to support one surface of both surfaces of the insulating thin film; and a first conductive structure, which has a sheet resistance of 1013 ohms or less in a portion in which contact friction occurs between the first solution tank and an object outside of the first solution tank.
    Type: Grant
    Filed: February 12, 2016
    Date of Patent: July 14, 2020
    Assignee: HITACHI, LTD.
    Inventors: Kazuma Matsui, Itaru Yanagi
  • Publication number: 20190369080
    Abstract: A first modulation voltage is applied to a thin film. An amount of a change in the phase of a current carried through the thin film with respect to the phase of the first modulation voltage is compared with a threshold. Upon detecting that the amount of the change in the phase exceeds the threshold is detected, the application of the first modulation voltage is stopped. Thus, a nanopore is formed on the thin film at high speed.
    Type: Application
    Filed: December 9, 2016
    Publication date: December 5, 2019
    Inventors: Yoshimitsu YANAGAWA, Kenichi TAKEDA, Itaru YANAGI, Yusuke GOTO, Kazuma MATSUI
  • Publication number: 20190293625
    Abstract: A method includes a step of introducing a solution between a substrate with a membrane in which the membrane is provided so as to close an opening and a substrate provided with an independent electrode in which the independent electrode is provided, a step of pressure bonding the substrate with the membrane and the substrate with the independent electrode through a partition wall, and a step of forming a sealed liquid tank surrounded by at least the membrane and the partition wall by the pressure bonding, and arraying of a solid-state type nanopore sequencer is simply performed.
    Type: Application
    Filed: October 12, 2017
    Publication date: September 26, 2019
    Inventors: Mayu AOKI, Itaru YANAGI, Kunio HARADA, Kenichi TAKEDA
  • Patent number: 10416147
    Abstract: A method of manufacturing a membrane device comprises: a first step of forming a pillar structure on a part of a Si substrate by etching; a second step of forming a first insulation layer on the Si substrate so as to expose a Si surface of an upper part of the pillar structure; a third step of forming a second insulation layer on the pillar structure and the first insulation layer; and a fourth step of etching the Si substrate from an opposite side of the second insulation layer and etching the pillar structure with the first insulation layer being a mask, to thereby form a membrane, which is a region free of the pillar structure in the second insulation layer.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: September 17, 2019
    Assignee: HITACHI, LTD.
    Inventors: Itaru Yanagi, Kenichi Takeda
  • Publication number: 20190249243
    Abstract: To introduce a biomolecule into a nanopore without the need to check the position of the nanopore in a thin film. In addition, displacement stability is ensured and stable acquisition of blocking signals is realized. An immobilization member 107 having a larger size than a thin film 113 with a nanopore 112 is used, and biomolecules are immobilized on the biomolecule immobilization member 107 at a density that allows at least one biomolecule 108 to enter an electric field region around the nanopore when the biomolecule immobilization member 107 has moved close to a nanopore device 101.
    Type: Application
    Filed: April 26, 2019
    Publication date: August 15, 2019
    Inventors: Rena AKAHORI, Itaru YANAGI, Kenichi TAKEDA
  • Patent number: 10338057
    Abstract: The membrane of a conventional solid-state nanopore device, which is believed to be promising for understanding the structural characteristics of DNA and determining a nucleotide sequence, has been thick, and the accuracy in determining a nucleotide sequence in the DNA chain has been insufficient. A method characterized by forming a membrane by forming a first film on a first substrate having a surface of Si, then forming a hole in the first film in such a manner that the surface of the first substrate is exposed, then forming a second film on the first film and on the surface of the first substrate and then etching the first substrate with a solution which does not remove the second film.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: July 2, 2019
    Assignee: HITACHI, LTD.
    Inventors: Itaru Yanagi, Kenichi Takeda
  • Patent number: 10294525
    Abstract: To introduce a biomolecule into a nanopore without the need to check the position of the nanopore in a thin film. In addition, displacement stability is ensured and stable acquisition of blocking signals is realized. An immobilization member 107 having a larger size than a thin film 113 with a nanopore 112 is used, and biomolecules are immobilized on the biomolecule immobilization member 107 at a density that allows at least one biomolecule 108 to enter an electric field region around the nanopore when the biomolecule immobilization member 107 has moved close to a nanopore device 101.
    Type: Grant
    Filed: October 28, 2015
    Date of Patent: May 21, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Rena Akahori, Itaru Yanagi, Kenichi Takeda
  • Publication number: 20190094180
    Abstract: The present invention provides a membrane device having a configuration capable of reducing the frequency of clogging of a sample in a nanopore when the sample passes through the nanopore. In the membrane device according to the present invention, a membrane and a semiconductor layer are stacked on a Si substrate, and an insulating film is formed on a side wall of a through hole included in the semiconductor layer.
    Type: Application
    Filed: April 28, 2016
    Publication date: March 28, 2019
    Inventor: Itaru YANAGI
  • Publication number: 20190004030
    Abstract: A method of manufacturing a membrane device comprises: a first step of forming a pillar structure on a part of a Si substrate by etching; a second step of forming a first insulation layer on the Si substrate so as to expose a Si surface of an upper part of the pillar structure; a third step of forming a second insulation layer on the pillar structure and the first insulation layer; and a fourth step of etching the Si substrate from an opposite side of the second insulation layer and etching the pillar structure with the first insulation layer being a mask, to thereby form a membrane, which is a region free of the pillar structure in the second insulation layer.
    Type: Application
    Filed: March 18, 2016
    Publication date: January 3, 2019
    Inventors: Itaru YANAGI, Kenichi TAKEDA
  • Publication number: 20180372712
    Abstract: A biomolecule measuring device includes a first liquid tank and a second liquid tank which are filled with an electrolytic solution, a nanopore device that supports a thin film having a nanopore and is provided between the first liquid tank and the second liquid tank so as to communicate between the first liquid, tank and the second liquid tank through the nanopores, and an immobilizing member that is disposed in the first liquid tank, has a size larger than that of the thin film, and to which the biomolecules are immobilized, in which at least, one of the nanopore device and the immobilizing member has a groove structure.
    Type: Application
    Filed: November 29, 2016
    Publication date: December 27, 2018
    Inventors: Rena AKAHORI, Kenichi TAKEDA, Itaru YANAGI
  • Publication number: 20180252696
    Abstract: A solution tank device comprises: an insulating thin film, which is configured to allow an object to be measured to pass therethrough, and has a thickness of 1 micrometer or less; a first solution tank, which is configured to support one surface of both surfaces of the insulating thin film; and a first conductive structure, which has a sheet resistance of 1013 ohms or less in a portion in which contact friction occurs between the first solution tank and an object outside of the first solution tank.
    Type: Application
    Filed: February 12, 2016
    Publication date: September 6, 2018
    Inventors: Kazuma MATSUI, Itaru YANAGI
  • Patent number: 10030266
    Abstract: In the field of the next generation DNA sequencer, a method for integrating very high sensitive FET sensors having side gates and nanopores as devices used for identifying four kinds of base and for mapping the base sequence of DNA without using reagents, and a semiconductor device having selection transistors and amplifier transistors respectively corresponding to the FET sensors having side gates and nanopores respectively so as to be able to read the variation of a detection current based on the differences among the charges of the four kinds of base without deteriorating the detection sensitivity of the FET sensor, are presented.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: July 24, 2018
    Assignee: HITACHI, LTD.
    Inventors: Itaru Yanagi, Riichiro Takemura, Yoshimitsu Yanagawa, Takahide Yokoi, Takashi Anazawa
  • Publication number: 20180003673
    Abstract: A method for producing a membrane device includes: forming an insulating film as a first film on a Si substrate; forming a Si film as a second film on the entire surface or a part of the first film; forming an insulating film as a third film on the second film; forming an aperture so as to pass through a part of the third film positioned on the second film and not to pass through the second film; etching a part of the substrate on one side of the first film with a solution that does not etch the first film; and etching a part or all of the second film on the other side of the first film with a gas or a solution that does not etch the first film and has an etching rate for the third film lower than an etching rate for the second film.
    Type: Application
    Filed: February 13, 2015
    Publication date: January 4, 2018
    Inventors: Itaru YANAGI, Kenichi TAKEDA
  • Publication number: 20170307587
    Abstract: The membrane of a conventional solid-state nanopore device, which is believed to be promising for understanding the structural characteristics of DNA and determining a nucleotide sequence, has been thick, and the accuracy in determining a nucleotide sequence in the DNA chain has been insufficient. A method characterized by forming a membrane by forming a first film on a first substrate having a surface of Si, then forming a hole in the first film in such a manner that the surface of the first substrate is exposed, then forming a second film on the first film and on the surface of the first substrate and then etching the first substrate with a solution which does not remove the second film.
    Type: Application
    Filed: September 11, 2014
    Publication date: October 26, 2017
    Inventors: Itaru YANAGI, Kenichi TAKEDA
  • Publication number: 20170299572
    Abstract: The thin film of a thin film device used for analyzing a biopolymer breaks due to the potential difference between the solutions at both sides of the thin film. The apparatus has a thin film, a first solution in contact with a first surface of the thin film, a second solution in contact with a second surface of the thin film, potential difference adjustment means for adjusting the potential difference between the first solution and the second solution to a small value, a control unit for controlling the potential difference adjustment means, a biopolymer inlet from which a biopolymer is introduced to at least one of the first solution and the second solution, a first electrode provided in the first solution, a second electrode provided in the second solution and an ammeter for measuring the current which flows between the first electrode and the second electrode when the biopolymer passes through a hole in the thin film between the first solution and the second solution.
    Type: Application
    Filed: November 12, 2014
    Publication date: October 19, 2017
    Applicant: HITACHI, LTD.
    Inventors: Kazuma MATSUI, Itaru YANAGI, Kenichi TAKEDA
  • Publication number: 20170268054
    Abstract: To introduce a biomolecule into a nanopore without the need to check the position of the nanopore in a thin film. In addition, displacement stability is ensured and stable acquisition of blocking signals is realized. An immobilization member 107 having a larger size than a thin film 113 with a nanopore 112 is used, and biomolecules are immobilized on the biomolecule immobilization member 107 at a density that allows at least one biomolecule 108 to enter an electric field region around the nanopore when the biomolecule immobilization member 107 has moved close to a nanopore device 101.
    Type: Application
    Filed: October 28, 2015
    Publication date: September 21, 2017
    Inventors: Rena AKAHORI, Itaru YANAGI, Kenichi TAKEDA
  • Patent number: 9759681
    Abstract: The present invention is intended to provide a method and a device for detecting a biomolecule with high sensitivity and high throughput over a wide dynamic range without requiring concentration adjustments of a sample in advance. The present invention specifically binds charge carriers to a detection target biomolecule, and detects the detection target biomolecule one by one by measuring a current change that occurs as the conjugate of the biomolecule and the charge carriers passes through a micropore. High-throughput detection of a biomolecule sample is possible with an array of detectors.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: September 12, 2017
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Toshiro Saito, Kenta Imai, Kyoko Imai, Kazumichi Imai, Itaru Yanagi, Yoshimitsu Yanagawa, Masahiko Ando, Naoshi Itabashi
  • Patent number: 9673339
    Abstract: In a non-volatile memory in which writing/erasing is performed by changing a total charge amount by injecting electrons and holes into a silicon nitride film serving as a charge accumulation layer, in order to realize a high efficiency of a hole injection from a gate electrode, the gate electrode of a memory cell comprises a laminated structure made of a plurality of polysilicon films with different impurity concentrations, for example, a two-layered structure comprising a p-type polysilicon film with a low impurity concentration and a p?-type polysilicon film with a high impurity concentration deposited thereon.
    Type: Grant
    Filed: August 28, 2015
    Date of Patent: June 6, 2017
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Itaru Yanagi, Toshiyuki Mine, Hirotaka Hamamura, Digh Hisamoto, Yasuhiro Shimamoto
  • Publication number: 20170138899
    Abstract: While an insulating film having a near-field light generating element placed thereon is being irradiated with light in an electrolytic solution, or after the film that has been irradiated with light is disposed in the electrolytic solution, a first voltage is applied between the two electrodes installed in the electrolytic solution across the film, a second voltage is then applied between the two electrodes, and a value of a current that flows between the two electrodes due to the application of the second voltage is detected. This procedure is stopped when the current value reaches or exceeds a pre-set threshold value, whereby a hole is formed at a desired location in the thin-film.
    Type: Application
    Filed: March 26, 2015
    Publication date: May 18, 2017
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Naoshi ITABASHI, Sonoko MIGITAKA, Itaru YANAGI, Rena AKAHORI, Kenichi TAKEDA
  • Publication number: 20160327513
    Abstract: A pore forming method in which a pore is formed in such a way that a first voltage is applied between electrodes that are disposed with a film in an electrolytic solution therebetween; a second voltage, which is lower than the first voltage, is applied between the electrodes; a current that flows between the electrodes owing to the application of the second voltage is measured; it is judged whether a value of a current is equal to or larger than a predefined threshold; and if the value of the current is smaller than the threshold, the above sequence is repeated until a pore is formed. In this case, the second voltage is a voltage that makes the value (IPF) of the current flowing through the film practically 0. With the use of the above method, a nanopore is formed in the film simply, easily, and accurately.
    Type: Application
    Filed: December 25, 2013
    Publication date: November 10, 2016
    Inventors: Itaru YANAGI, Rena AKAHORI, Kenichi TAKEDA