Patents by Inventor Itaru Yanagi

Itaru Yanagi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160122815
    Abstract: In the field of the next generation DNA sequencer, a method for integrating very high sensitive FET sensors having side gates and nanopores as devices used for identifying four kinds of base and for mapping the base sequence of DNA without using reagents, and a semiconductor device having selection transistors and amplifier transistors respectively corresponding to the FET sensors having side gates and nanopores respectively so as to be able to read the variation of a detection current based on the differences among the charges of the four kinds of base without deteriorating the detection sensitivity of the FET sensor, are presented.
    Type: Application
    Filed: June 27, 2013
    Publication date: May 5, 2016
    Inventors: Itaru YANAGI, Riichiro TAKEMURA, Yoshimitsu YANAGAWA, Takahide YOKOI, Takashi ANAZAWA
  • Publication number: 20150372151
    Abstract: In a non-volatile memory in which writing/erasing is performed by changing a total charge amount by injecting electrons and holes into a silicon nitride film serving as a charge accumulation layer, in order to realize a high efficiency of a hole injection from a gate electrode, the gate electrode of a memory cell comprises a laminated structure made of a plurality of polysilicon films with different impurity concentrations, for example, a two-layered structure comprising a p-type polysilicon film with a low impurity concentration and a p?-type polysilicon film with a high impurity concentration deposited thereon.
    Type: Application
    Filed: August 28, 2015
    Publication date: December 24, 2015
    Inventors: Itaru YANAGI, Toshiyuki MINE, Hirotaka HAMAMURA, Digh HISAMOTO, Yasuhiro SHIMAMOTO
  • Publication number: 20150308977
    Abstract: The present invention is intended to provide a method and a device for detecting a biomolecule with high sensitivity and high throughput over a wide dynamic range without requiring concentration adjustments of a sample in advance. The present invention specifically binds charge carriers to a detection target biomolecule, and detects the detection target biomolecule one by one by measuring a current change that occurs as the conjugate of the biomolecule and the charge carriers passes through a micropore. High-throughput detection of a biomolecule sample is possible with an array of detectors.
    Type: Application
    Filed: June 28, 2013
    Publication date: October 29, 2015
    Inventors: Toshiro Saito, Kenta Imai, Kyoko Imai, Kazumichi Imai, Itaru Yanagi, Yoshimitsu Yanagawa, Masahiko Ando, Naoshi Itabashi
  • Publication number: 20140346515
    Abstract: Detection accuracy of a semiconductor device for detecting various kinds of substances including biological matter such as DNA is to be increased. This semiconductor device includes: a channel region CH placed on a first surface of a silicon oxide film 110; source/drain regions placed on both sides of the channel region CH; a gate electrode G placed on the first surface at a distance from the channel region CH, the gate electrode G being located to face a side surface xz1 of the channel region CH; an insulating film Z located between the channel region CH and the gate electrode G; and a pore P extending parallel to the side surface xz1 of the channel region CH, the pore P being perpendicular to the first surface. A test object such as DNA 200 is introduced into the pore P, and field changes caused by the test object in an inversion layer 10 formed in the side surface xz1 of the channel region CH is detected as changes in the current flowing between the source/drain regions.
    Type: Application
    Filed: November 19, 2012
    Publication date: November 27, 2014
    Inventors: Itaru Yanagi, Masahiko Ando, Toshiyuki Mine, Taro Osabe, Tomoyuki Ishii
  • Publication number: 20140327066
    Abstract: In a non-volatile memory in which writing/erasing is performed by changing a total charge amount by injecting electrons and holes into a silicon nitride film serving as a charge accumulation layer, in order to realize a high efficiency of a hole injection from a gate electrode, the gate electrode of a memory cell comprises a laminated structure made of a plurality of polysilicon films with different impurity concentrations, for example, a two-layered structure comprising a p-type polysilicon film with a low impurity concentration and a p|-type polysilicon film with a high impurity concentration deposited thereon.
    Type: Application
    Filed: July 18, 2014
    Publication date: November 6, 2014
    Inventors: Itaru YANAGI, Toshiyuki MINE, Hirotaka HAMAMURA, Digh HISAMOTO, Yasuhiro SHIMAMOTO
  • Publication number: 20140243214
    Abstract: In an FET configuration having a channel with a small thickness, transistor characteristics vary for different FETs in the same array, and therefore when the same gate voltage is applied, the sensitivities of DNA detection may be insufficient. To this end, the change in the channel current when DNA passes through the nanopore is detected while applying an optimum gate voltage for each nanopore FET to attain a predetermined channel current value to a plurality of nanopore FETs disposed on the same substrate, and four types of bases constituting DNA are distinguished.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Applicant: Hitachi, Ltd.
    Inventors: Takanobu Haga, Itaru Yanagi, Naoshi Itabashi, Yoshimitsu Yanagawa, Takeshi Ohura, Takashi Anazawa
  • Patent number: 8816426
    Abstract: In a non-volatile memory, writing/erasing is performed by changing a total charge amount by injecting electrons and holes into a silicon nitride film, which serves as a charge accumulation layer. The gate electrode of a memory cell has a laminated structure made of a plurality of polysilicon films with different impurity concentrations. In a two-layered structure the gate electrode has a p-type polysilicon film with a low impurity concentration and a p+-type polysilicon film with a high impurity concentration deposited thereon. Holes are injected into the charge accumulation layer from the gate electrode.
    Type: Grant
    Filed: March 17, 2013
    Date of Patent: August 26, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Itaru Yanagi, Toshiyuki Mine, Hirotaka Hamamura, Digh Hisamoto, Yasuhiro Shimamoto
  • Publication number: 20130234236
    Abstract: In a non-volatile memory in which writing/erasing is performed by changing a total charge amount by injecting electrons and holes into a silicon nitride film serving as a charge accumulation layer, in order to realize a high efficiency of a hole injection from a gate electrode, the gate electrode of a memory cell comprises a laminated structure made of a plurality of polysilicon films with different impurity concentrations, for example, a two-layered structure comprising a p-type polysilicon film with a low impurity concentration and a p+-type polysilicon film with a high impurity concentration deposited thereon.
    Type: Application
    Filed: March 17, 2013
    Publication date: September 12, 2013
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Itaru YANAGI, Toshiyuki MINE, Hirotaka HAMAMURA, Digh HISAMOTO, Yasuhiro SHIMAMOTO
  • Patent number: 8410543
    Abstract: In a non-volatile memory in which writing/erasing is performed by changing a total charge amount by injecting electrons and holes into a silicon nitride film serving as a charge accumulation layer, in order to realize a high efficiency of a hole injection from a gate electrode, the gate electrode of a memory cell comprises a laminated structure made of a plurality of polysilicon films with different impurity concentrations, for example, a two-layered structure comprising a p-type polysilicon film with a low impurity concentration and a p+-type polysilicon film with a high impurity concentration deposited thereon.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: April 2, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Itaru Yanagi, Toshiyuki Mine, Hirotaka Hamamura, Digh Hisamoto, Yasuhiro Shimamoto
  • Patent number: 8319274
    Abstract: A gate dielectric functioning as a charge-trapping layer of a non-volatile memory cell with a structure of an insulator gate field effect transistor is formed by laminating a first insulator formed of a silicon oxide film, a second insulator formed of a silicon nitride film, a third insulator formed of a silicon nitride film containing oxygen, and a fourth insulator formed of a silicon oxide film in this order on a main surface of a semiconductor substrate. Holes are injected into the charge-trapping layer from a gate electrode side. Accordingly, since the operations can be achieved without the penetration of the holes through the interface in contact to the channel and the first insulator, the deterioration in rewriting endurance and the charge-trapping characteristics due to the deterioration of the first insulator does not occur, and highly efficient rewriting (writing and erasing) characteristics and stable charge-trapping characteristics can be achieved.
    Type: Grant
    Filed: July 27, 2007
    Date of Patent: November 27, 2012
    Assignee: Renesas Electronics Corporation
    Inventors: Digh Hisamoto, Itaru Yanagi, Yasuhiro Shimamoto, Toshiyuki Mine, Yutaka Okuyama
  • Publication number: 20110001179
    Abstract: In a non-volatile memory in which charge is injected from a gate electrode to a charge accumulating layer, charge injection efficiency, charge retention characteristic and reliability are all improved compared with a conventional gate structure. In a nonvolatile memory which carries out write/erasure by changing the total charge amount by injecting electrons and holes into a silicon nitride film which makes up a charge accumulating layer, in order to highly efficiently carry out charge injection from a gate electrode, the gate electrode of a memory cell is made up of a two-layer film of a non-doped polysilicon layer and a metal material electrode layer.
    Type: Application
    Filed: June 22, 2010
    Publication date: January 6, 2011
    Applicant: RENESAS ELECTRONICS CORPORATION
    Inventors: Itaru YANAGI, Digh HISAMOTO, Daisuke OKADA, Atushi YOSHITOMI, Yasufumi MORIMOTO, Toshiyuki MINE
  • Patent number: 7863134
    Abstract: A charge holding insulating film in a memory cell is constituted by a laminated film composed of a bottom insulating film, a charge storage film, and a top insulating film on a semiconductor substrate. Further, by performing a plasma nitriding treatment to the bottom insulating film, a nitride region whose nitrogen concentration has a peak value and is 1 atom % or more is formed on the upper surface side in the bottom insulating film. The thickness of the nitride region is set to 0.5 nm or more and 1.5 nm or less, and the peak value of nitrogen concentration is set to 5 atom % or more and 40 atom % or less, and a position of the peak value of nitrogen concentration is set within 2 nm from the upper surface of the bottom insulating film, thereby suppressing an interaction between the bottom insulating film and the charge storage film.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: January 4, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Hirotaka Hamamura, Itaru Yanagi, Toshiyuki Mine
  • Publication number: 20100129998
    Abstract: A charge holding insulating film in a memory cell is constituted by a laminated film composed of a bottom insulating film, a charge storage film, and a top insulating film on a semiconductor substrate. Further, by performing a plasma nitriding treatment to the bottom insulating film, a nitride region whose nitrogen concentration has a peak value and is 1 atom % or more is formed on the upper surface side in the bottom insulating film. The thickness of the nitride region is set to 0.5 nm or more and 1.5 nm or less, and the peak value of nitrogen concentration is set to 5 atom % or more and 40 atom % or less, and a position of the peak value of nitrogen concentration is set within 2 nm from the upper surface of the bottom insulating film, thereby suppressing an interaction between the bottom insulating film and the charge storage film.
    Type: Application
    Filed: January 28, 2010
    Publication date: May 27, 2010
    Inventors: Hirotaka HAMAMURA, Itaru YANAGI, Toshiyuki MINE
  • Patent number: 7719051
    Abstract: A charge holding insulating film in a memory cell is constituted by a laminated film composed of a bottom insulating film, a charge storage film, and a top insulating film on a semiconductor substrate. Further, by performing a plasma nitriding treatment to the bottom insulating film, a nitride region whose nitrogen concentration has a peak value and is 1 atom % or more is formed on the upper surface side in the bottom insulating film. The thickness of the nitride region is set to 0.5 nm or more and 1.5 nm or less, and the peak value of nitrogen concentration is set to 5 atom % or more and 40 atom % or less, and a position of the peak value of nitrogen concentration is set within 2 nm from the upper surface of the bottom insulating film, thereby suppressing an interaction between the bottom insulating film and the charge storage film.
    Type: Grant
    Filed: August 5, 2008
    Date of Patent: May 18, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Hirotaka Hamamura, Itaru Yanagi, Toshiyuki Mine
  • Publication number: 20090309153
    Abstract: A process of forming a non-volatile memory in a memory region on a silicon substrate, in which a select gate electrode is formed on a main surface of the silicon substrate, and a dummy gate adjacent to one of sidewall surfaces of the electrode is formed. Then, memory source/drain regions are formed by ion implantation using the dummy gate as an ion implantation mask. Then, the dummy gate is removed, and a charge accumulating film and a memory gate electrode are sequentially formed at the part where the dummy gate has been provided, thereby forming a structure in which the memory source/drain regions are arranged at portions below and lateral to the memory gate electrode. In this process, the charge accumulating film and the memory gate electrode are formed after the ion implantation for forming the memory source/drain regions is carried out.
    Type: Application
    Filed: June 9, 2009
    Publication date: December 17, 2009
    Inventors: Itaru YANAGI, Digh Hisamoto
  • Publication number: 20090065848
    Abstract: A charge holding insulating film in a memory cell is constituted by a laminated film composed of a bottom insulating film, a charge storage film, and a top insulating film on a semiconductor substrate. Further, by performing a plasma nitriding treatment to the bottom insulating film, a nitride region whose nitrogen concentration has a peak value and is 1 atoms or more is formed on the upper surface side in the bottom insulating film. The thickness of the nitride region is set to 0.5 nm or more and 1.5 nm or less, and the peak value of nitrogen concentration is set to 5 atom % or more and 40 atom % or less, and a position of the peak value of nitrogen concentration is set within 2 nm from the upper surface of the bottom insulating film, thereby suppressing an interaction between the bottom insulating film and the charge storage film.
    Type: Application
    Filed: August 5, 2008
    Publication date: March 12, 2009
    Inventors: Hirotaka HAMAMURA, Itaru YANAGI, Toshiyuki MINE
  • Publication number: 20080185635
    Abstract: In a non-volatile memory in which writing/erasing is performed by changing a total charge amount by injecting electrons and holes into a silicon nitride film serving as a charge accumulation layer, in order to realize a high efficiency of a hole injection from a gate electrode, the gate electrode of a memory cell comprises a laminated structure made of a plurality of polysilicon films with different impurity concentrations, for example, a two-layered structure comprising a p-type polysilicon film with a low impurity concentration and a p+-type polysilicon film with a high impurity concentration deposited thereon.
    Type: Application
    Filed: December 27, 2007
    Publication date: August 7, 2008
    Inventors: Itaru Yanagi, Toshiyuki Mine, Hirotaka Hamamura, Digh Hisamoto, Yasuhiro Shimamoto
  • Publication number: 20080073705
    Abstract: A gate dielectric functioning as a charge-trapping layer of a non-volatile memory cell with a structure of an insulator gate field effect transistor is formed by laminating a first insulator formed of a silicon oxide film, a second insulator formed of a silicon nitride film, a third insulator formed of a silicon nitride film containing oxygen, and a fourth insulator formed of a silicon oxide film in this order on a main surface of a semiconductor substrate. Holes are injected into the charge-trapping layer from a gate electrode side. Accordingly, since the operations can be achieved without the penetration of the holes through the interface in contact to the channel and the first insulator, the deterioration in rewriting endurance and the charge-trapping characteristics due to the deterioration of the first insulator does not occur, and highly efficient rewriting (writing and erasing) characteristics and stable charge-trapping characteristics can be achieved.
    Type: Application
    Filed: July 27, 2007
    Publication date: March 27, 2008
    Inventors: Digh HISAMOTO, Itaru Yanagi, Yasuhiro Shimamoto, Toshiyuki Mine, Yutaka Okuyama