Patents by Inventor Ivan Shubin

Ivan Shubin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8548287
    Abstract: In an MCM, an optical signal is conveyed by an optical waveguide disposed on a surface of a first substrate to an optical coupler having a vertical facet. This optical coupler has an optical mode that is different than the optical mode of the optical waveguide. For example, the spatial extent of the optical mode associated with the optical coupler may be larger, thereby reducing optical losses and sensitivity to alignment errors. Then, the optical signal is directly coupled from the vertical facet to a facing vertical facet of an identical optical coupler on another substrate, and the optical signal is conveyed in another optical waveguide disposed on the other substrate.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: October 1, 2013
    Assignee: Oracle International Corporation
    Inventors: Hiren D. Thacker, Xuezhe Zheng, Ivan Shubin, Kannan Raj, John E. Cunningham, Ashok V. Krishnamoorthy
  • Publication number: 20130207261
    Abstract: An MCM includes a two-dimensional array of facing chips, including island chips and bridge chips that communicate with each other using overlapping connectors. In order to maintain the relative vertical spacing of these connectors, compressible structures are in cavities in a substrate, which house the bridge chips, provide a compressive force on back surfaces of the bridge chips. These compressible structures include a compliant material with shape and volume compression. In this way, the MCM may ensure that facing surfaces of the island chips and the bridge chips, as well as connectors on these surfaces, are approximately coplanar without bending the bridge chips.
    Type: Application
    Filed: February 15, 2012
    Publication date: August 15, 2013
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Hiren D. Thacker, Hyung Suk Yang, Ivan Shubin, John E. Cunningham
  • Publication number: 20130121635
    Abstract: In an MCM, an optical signal is conveyed by an optical waveguide disposed on a surface of a first substrate to an optical coupler having a vertical facet. This optical coupler has an optical mode that is different than the optical mode of the optical waveguide. For example, the spatial extent of the optical mode associated with the optical coupler may be larger, thereby reducing optical losses and sensitivity to alignment errors. Then, the optical signal is directly coupled from the vertical facet to a facing vertical facet of an identical optical coupler on another substrate, and the optical signal is conveyed in another optical waveguide disposed on the other substrate.
    Type: Application
    Filed: November 10, 2011
    Publication date: May 16, 2013
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Hiren D. Thacker, Xuezhe Zheng, Ivan Shubin, Kannan Raj, John E. Cunningham, Ashok V. Krishnamoorthy
  • Patent number: 8428404
    Abstract: A hybrid integrated module includes a semiconductor die mechanically coupled face-to-face to an integrated device in which the substrate has been removed. For example, the integrated circuit may include an optical waveguide that conveys an optical signal, which is fabricated on a silicon-on-insulator (SOI) wafer in which the back-side silicon substrate or handler has been completely removed. Moreover, an optical device may be disposed on the bottom surface of an oxide layer (such as a buried-oxide layer) in the integrated device, and the geometry and materials in the integrated device may be selected and/or defined so that the optical signal is evanescently coupled between the optical waveguide and the optical device.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: April 23, 2013
    Assignee: Oracle America, Inc.
    Inventors: Ivan Shubin, John E. Cunningham, Ashok V. Krishnamoorthy
  • Patent number: 8390109
    Abstract: In a chip package, semiconductor dies in a vertical stack of semiconductor dies or chips (which is referred to as a ‘plank stack’) are separated by a mechanical spacer (such as a filler material or an adhesive). Moreover, the chip package includes a substrate at a right angle to the plank stack, which is electrically coupled to the semiconductor dies along an edge of the plank stack. In particular, electrical pads proximate to a surface of the substrate (which are along a stacking direction of the plank stack) are electrically coupled to pads that are proximate to edges of the semiconductor dies by an intervening conductive material, such as: solder, stud bumps, plated traces, wire bonds, spring connectors, a conductive adhesive and/or an anisotropic conducting film. Note that the chip package may facilitate high-bandwidth communication of signals between the semiconductor dies and the substrate.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: March 5, 2013
    Assignee: Oracle America, Inc.
    Inventors: Darko R. Popovic, Matthew D. Giere, Bruce M. Guenin, Theresa Y. Sze, Ivan Shubin, John A. Harada, David C. Douglas, Jing Shi
  • Publication number: 20130037905
    Abstract: In a hybrid integrated module, a semiconductor die is mechanically coupled face-to-face to an integrated device in which the substrate has been removed. For example, the integrated circuit may include an optical device fabricated on a silicon-on-insulator (SOI) wafer in which the backside silicon handler has been completely removed, thereby facilitating improved device performance and highly efficient thermal tuning of the operating wavelength of the optical device. Moreover, the semiconductor die may be a VLSI chip that provides power, and serves as a mechanical handler and/or an electrical driver. The thermal tuning efficiency of the substrateless optical device may be enhanced by over 100× relative to an optical device with an intact substrate, and by 5× relative to an optical device in which the substrate has only been removed in proximity to the optical device.
    Type: Application
    Filed: August 9, 2011
    Publication date: February 14, 2013
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Ivan Shubin, Ashok V. Krishnamoorthy, John E. Cunningham
  • Publication number: 20130039614
    Abstract: An integrated circuit is described. This integrated circuit includes an optical waveguide defined in a semiconductor layer, and an optical detector disposed on top of the optical waveguide. Moreover, the optical waveguide has an end with a reflecting facet. For example, the reflective facet may be defined using an anisotropic etch of the semiconductor layer. This reflecting facet reflects light propagating in a plane of the optical waveguide out of the plane into the optical detector, thereby providing a photodetector with high optical responsivity, including an extremely low dark current (and, thus, high photosensitivity) and an extremely small capacitance (and, thus, high electrical bandwidth).
    Type: Application
    Filed: August 8, 2011
    Publication date: February 14, 2013
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Ivan Shubin, John E. Cunningham
  • Publication number: 20130015578
    Abstract: In a chip package, semiconductor dies in a vertical stack of semiconductor dies or chips (which is referred to as a ‘plank stack’) are aligned by positive features that are mechanically coupled to negative features recessed below the surfaces of adjacent semiconductor dies. Moreover, the chip package includes an interposer plate at approximately a right angle to the plank stack, which is electrically coupled to the semiconductor dies along an edge of the plank stack. In particular, electrical pads proximate to a surface of the interposer plate (which are along a stacking direction of the plank stack) are electrically coupled to pads that are proximate to edges of the semiconductor dies by an intervening conductive material, such as solder balls or spring connectors. Note that the chip package may facilitate high-bandwidth communication of signals between the semiconductor dies and the interposer plate.
    Type: Application
    Filed: July 13, 2011
    Publication date: January 17, 2013
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Hiren D. Thacker, John E. Cunningham, Ivan Shubin, Ashok V. Krishnamoorthy
  • Publication number: 20130003310
    Abstract: A chip package includes a processor, an interposer chip and a voltage regulator module (VRM). The interposer chip is electrically coupled to the processor by first electrical connectors proximate to a surface of the interposer chip. Moreover, the interposer chip includes second electrical connectors proximate to another surface of the interposer chip, which are electrically coupled to the first electrical connectors by through-substrate vias (TSVs) in the interposer chip. Note that the second electrical connectors can electrically couple the interposer chip to a circuit board. Furthermore, the VRM is electrically coupled to the processor by the interposer chip, and is proximate to the processor in the chip package, thereby reducing voltage droop. For example, the VRM may be electrically coupled to the surface of the interposer chip, and may be adjacent to the processor. Alternatively, the VRM may be electrically coupled to the other surface of the interposer chip.
    Type: Application
    Filed: June 28, 2011
    Publication date: January 3, 2013
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Kannan Raj, Ivan Shubin, John E. Cunningham
  • Publication number: 20120266464
    Abstract: A multi-level interposer plate and a multi-chip module (MCM) that includes the multi-level interposer plate are described. First surfaces and second surfaces in different regions of the multi-level interposer plate have associated, different thicknesses. Moreover, first micro-spring connectors and second micro-spring connectors are respectively disposed on the first surfaces and the second surfaces. In the MCM, a given one of the first surfaces of the multi-level interposer plate faces a bridge chip in a first layer in an array of chips in the MCM so that first connectors, disposed on the bridge chip, mechanically and electrically couple to the first micro-spring connectors. Similarly, a given one of the second surfaces of the multi-level interposer plate faces an island chip in a second layer in the array of chips so that second connectors, disposed on the island chip, mechanically and electrically couple to the second micro-spring connectors.
    Type: Application
    Filed: June 13, 2012
    Publication date: October 25, 2012
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Eugene M. Chow, John E. Cunningham, James G. Mitchell, Ivan Shubin
  • Publication number: 20120211878
    Abstract: In a chip package, semiconductor dies in a vertical stack of semiconductor dies or chips (which is referred to as a ‘plank stack’) are separated by a mechanical spacer (such as a filler material or an adhesive). Moreover, the chip package includes a substrate at a right angle to the plank stack, which is electrically coupled to the semiconductor dies along an edge of the plank stack. In particular, electrical pads proximate to a surface of the substrate (which are along a stacking direction of the plank stack) are electrically coupled to pads that are proximate to edges of the semiconductor dies by an intervening conductive material, such as: solder, stud bumps, plated traces, wire bonds, spring connectors, a conductive adhesive and/or an anisotropic conducting film. Note that the chip package may facilitate high-bandwidth communication of signals between the semiconductor dies and the substrate.
    Type: Application
    Filed: February 17, 2011
    Publication date: August 23, 2012
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Darko R. Popovic, Matthew D. Giere, Bruce M. Guenin, Theresa Y. Sze, Ivan Shubin, John A. Harada, David C. Douglas, Jing Shi
  • Publication number: 20120213467
    Abstract: An optical device implemented on a substrate (such as silicon) is described. This optical device includes a wavelength-sensitive optical component with a high thermal resistance to a surrounding external environment and a low thermal resistance to a localized thermal-tuning mechanism (such as a heater), which modifies a temperature of the wavelength-sensitive optical component, thereby specifying an operating wavelength of the wavelength-sensitive optical component. In particular, the thermal resistance associated with a thermal dissipation path from the thermal-tuning mechanism to the external environment via the substrate is increased by removing a portion of the substrate to create a gap that is proximate to the thermal-tuning mechanism and the wavelength-sensitive optical component. Furthermore, the optical device includes a binder material mechanically coupled to the substrate and proximate to the gap, thereby maintaining a mechanical strength of the optical device.
    Type: Application
    Filed: February 22, 2011
    Publication date: August 23, 2012
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Hiren D. Thacker, Ivan Shubin, John E. Cunningham
  • Patent number: 8218334
    Abstract: A multi-level interposer plate and a multi-chip module (MCM) that includes the multi-level interposer plate are described. First surfaces and second surfaces in different regions of the multi-level interposer plate have associated, different thicknesses. Moreover, first micro-spring connectors and second micro-spring connectors are respectively disposed on the first surfaces and the second surfaces. In the MCM, a given one of the first surfaces of the multi-level interposer plate faces a bridge chip in a first layer in an array of chips in the MCM so that first connectors, disposed on the bridge chip, mechanically and electrically couple to the first micro-spring connectors. Similarly, a given one of the second surfaces of the multi-level interposer plate faces an island chip in a second layer in the array of chips so that second connectors, disposed on the island chip, mechanically and electrically couple to the second micro-spring connectors.
    Type: Grant
    Filed: March 9, 2010
    Date of Patent: July 10, 2012
    Assignee: Oracle America, Inc.
    Inventors: Eugene M. Chow, John E. Cunningham, James G. Mitchell, Ivan Shubin
  • Patent number: 8150223
    Abstract: Embodiments of an optical device, an array of optical devices, and a technique for fabricating the optical device or the array are described. This optical device is implemented on a substrate (such as silicon), and includes a thermally tunable optical waveguide with a high thermal resistance to the surrounding external environment and a low thermal resistance to a localized heater. In particular, the thermal resistances associated with thermal dissipation paths from a heater in the optical device to an external environment via electrodes and via the substrate are increased, while the thermal resistance between the optical waveguide and the heater is decreased.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: April 3, 2012
    Assignee: Oracle America, Inc.
    Inventors: Guoliang Li, Ashok V. Krishnamoorthy, John E. Cunningham, Ivan Shubin, Xuezhe Zheng
  • Patent number: 8131119
    Abstract: Embodiments of an optical device, an array of optical devices, and a technique for fabricating the optical device or the array are described. This optical device is implemented on a substrate (such as silicon), and includes a thermally tunable optical waveguide that has good thermal isolation from its surroundings. In particular, a portion of a semiconductor in the optical device, which includes the optical waveguide, is free standing above a gap between the semiconductor layer and the substrate. By reducing the thermal coupling between the optical waveguide and the external environment, the optical device can be thermally tuned with significantly less power consumption.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: March 6, 2012
    Assignee: Oracle America, Inc.
    Inventors: John E. Cunningham, Ashok V. Krishnamoorthy, Ivan Shubin, Guoliang Li, Xuezhe Zheng
  • Patent number: 8078013
    Abstract: Embodiments of an optical device, an array of optical devices, and a technique for fabricating the optical device or the array are described. This optical device is implemented using two semiconductor layers (such as silicon), one of which includes a heater and the other includes a thermally tunable optical waveguide. Spatially separating these two functions in the optical device results in more efficient heat transfer between the heater and the optical waveguide, reduced heat transfer to the surroundings, and reduced optical losses in the optical waveguide relative to existing silicon-based optical devices.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: December 13, 2011
    Assignee: Oracle America, Inc.
    Inventors: Guoliang Li, John E. Cunningham, Ashok V. Krishnamoorthy, Ivan Shubin, Xuezhe Zheng
  • Publication number: 20110235962
    Abstract: An optical device with high thermal tuning efficiency is described. This optical device may be implemented using a tri-layer structure (silicon-on-insulator technology), including: a substrate, a buried-oxide layer and a semiconductor layer. In particular, a thermally tunable optical waveguide may be defined in the semiconductor layer. Furthermore, a portion of the substrate under the buried-oxide layer and substantially beneath a location of the thermally tunable optical waveguide is fabricated so that a portion of the buried-oxide layer is exposed. In this way, the thermal impedance between the thermally tunable optical waveguide and an external environment is increased, and power consumption associated with thermal tuning of the optical waveguide is reduced.
    Type: Application
    Filed: March 24, 2010
    Publication date: September 29, 2011
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Ivan Shubin, John E. Cunningham, Xuezhe Zheng, Guoliang Li, Ashok V. Krishnamoorthy
  • Publication number: 20110223778
    Abstract: A multi-level interposer plate and a multi-chip module (MCM) that includes the multi-level interposer plate are described. First surfaces and second surfaces in different regions of the multi-level interposer plate have associated, different thicknesses. Moreover, first micro-spring connectors and second micro-spring connectors are respectively disposed on the first surfaces and the second surfaces. In the MCM, a given one of the first surfaces of the multi-level interposer plate faces a bridge chip in a first layer in an array of chips in the MCM so that first connectors, disposed on the bridge chip, mechanically and electrically couple to the first micro-spring connectors. Similarly, a given one of the second surfaces of the multi-level interposer plate faces an island chip in a second layer in the array of chips so that second connectors, disposed on the island chip, mechanically and electrically couple to the second micro-spring connectors.
    Type: Application
    Filed: March 9, 2010
    Publication date: September 15, 2011
    Applicant: ORACLE INTERNATIONAL CORPORATION
    Inventors: Eugene M. Chow, John E. Cunningham, James G. Mitchell, Ivan Shubin
  • Patent number: 8014636
    Abstract: A phase modulation waveguide structure includes one of a semiconductor and a semiconductor-on-insulator substrate, a doped semiconductor layer formed over the one of a semiconductor and a semiconductor-on-insulator substrate, the doped semiconductor portion including a waveguide rib protruding from a surface thereof not in contact with the one of a semiconductor and a semiconductor-on-insulator substrate, and an electrical contact on top of the waveguide rib. The electrical contact is formed of a material with an optical refractive index close to that of a surrounding oxide layer that surrounds the waveguide rib and the electrical contact and lower than the optical refractive index of the doped semiconductor layer. During propagation of an optical mode within the waveguide structure, the electrical contact isolates the optical mode between the doped semiconductor layer and a metal electrode contact on top of the electrical contact.
    Type: Grant
    Filed: February 20, 2009
    Date of Patent: September 6, 2011
    Assignee: Oracle America
    Inventors: Ivan Shubin, Guoliang Li, John E. Cunningham, Ashok Krishnamoorthy, Xuezhe Zheng
  • Patent number: 7848599
    Abstract: Embodiments of an optical device, an array of optical devices, and a technique for fabricating the optical device or the array are described. This optical device is implemented on a substrate (such as silicon), and includes a thermally tunable optical waveguide that has good thermal isolation from its surroundings. In particular, a portion of a semiconductor in the optical device, which includes the optical waveguide, is free standing above a gap between the semiconductor layer and the substrate. By reducing the thermal coupling between the optical waveguide and the external environment, the optical device can be thermally tuned with significantly less power consumption.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: December 7, 2010
    Assignee: Oracle America, Inc.
    Inventors: John E. Cunningham, Ashok V. Krishnamoorthy, Ivan Shubin, Guoliang Li, Xuezhe Zheng