Patents by Inventor Iver E. Anderson

Iver E. Anderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240058864
    Abstract: The broad applicability of at least certain aspects of the present invention derives from the ability to determine the critical location where secondary satellite formation occurs for any atomization system or design and allows for the rapid assessment of the effectiveness of various satellite reduction strategies, including but not limited to several embodiments detailed herein. Aspects of this invention can be utilized during initial atomization system design in order to evaluate effective chamber geometries and enabling strategies which reduce/eliminate satelliting, or can be retrofit to existing systems and allows for economic evaluation of effectiveness based off of initial capital expenditures versus increased operating requirements/expenses.
    Type: Application
    Filed: September 12, 2023
    Publication date: February 22, 2024
    Inventors: Iver E. Anderson, Jordan A. Tiarks, Timothy E. Prost, Bo Kong, Emma H. White, Trevor M. Riedemann, Eric J. Deaton, Ross Anderson, David Byrd, Franz Hugolino Hernandez Gaitan
  • Patent number: 11826832
    Abstract: A method for gas atomization of a titanium alloy, nickel alloy, or other alumina (Al2O3)-forming alloy wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a passivation reaction film on the atomized particles wherein the reaction film retains a precursor halogen alloying element that is subsequently introduced into a microstructure formed by subsequent thermally processing of the atomized particles to improve oxidation resistance.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: November 28, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Andrew J. Heidloff, Joel R. Rieken, Iver E. Anderson
  • Publication number: 20230327501
    Abstract: A novel architecture for al motor rotor and stator of an electrical motor device as well as other electromagnetic device using soft magnetic wires and/or strips bundled and shaped to provide a desired magnetic flux path.
    Type: Application
    Filed: March 13, 2023
    Publication date: October 12, 2023
    Inventors: Jun Cui, Gaoyuan Ouyang, Iver E. Anderson, Matthew Kramer, Tsarafidy Raminosoa
  • Patent number: 11780012
    Abstract: The broad applicability of at least certain aspects of the present invention derives from the ability to determine the critical location where secondary satellite formation occurs for any atomization system or design and allows for the rapid assessment of the effectiveness of various satellite reduction strategies, including but not limited to several embodiments detailed herein. Aspects of this invention can be utilized during initial atomization system design in order to evaluate effective chamber geometries and enabling strategies which reduce/eliminate satelliting, or can be retrofit to existing systems and allows for economic evaluation of effectiveness based off of initial capital expenditures versus increased operating requirements/expenses.
    Type: Grant
    Filed: June 23, 2021
    Date of Patent: October 10, 2023
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Jordan A. Tiarks, Timothy E. Prost, Bo Kong, Emma H. White, Trevor M. Riedemann, Eric J. Deaton, Ross Anderson, David Byrd, Franz Hugolino Hernandez Gaitan
  • Publication number: 20230160043
    Abstract: Refractory-reinforced multiphase high entropy alloys (RHEAs) advantageously providing high strength and fracture toughness in an as-AM deposited condition and other conditions are described.
    Type: Application
    Filed: November 21, 2022
    Publication date: May 25, 2023
    Inventors: Iver E. Anderson, Emma Marie Hamilton White, Duane Johnson, Nicolas Argibay, Andrew B. Kustas, Michael Chandross, Raymond V. Puckett
  • Publication number: 20230146566
    Abstract: Improved manufacturing processes and resulting anisotropic permanent magnets, such as for example alnico permanent magnets, having highly controlled and aligned microstructure in the solid state are provided. A certain process embodiment involves applying a particular orientation and strength of magnetic field to loose, binder-coated magnet alloy powder particles in a compact-forming device as they are being formed into a compact in order to preferentially align the magnet alloy powder particles in the compact. The preferential alignment of the magnet alloy powder particle is locked in place in the compact by the binder after compact forming is complete. After removal from the device, the compact can be subjected to a subsequent sintering or other heat treating operation.
    Type: Application
    Filed: September 26, 2022
    Publication date: May 11, 2023
    Inventors: Aaron G. Kassen, Iver E. Anderson, Emma Marie Hamilton White, Matthew J. Kramer, David J. Byrd, Liangfa Hu
  • Patent number: 11515066
    Abstract: Improved manufacturing processes and resulting anisotropic permanent magnets, such as for example alnico permanent magnets, having highly controlled and aligned microstructure in the solid state are provided. A certain process embodiment involves applying a particular orientation and strength of magnetic field to loose, binder-coated magnet alloy powder particles in a compact-forming device as they are being formed into a compact in order to preferentially align the magnet alloy powder particles in the compact. The preferential alignment of the magnet alloy powder particle is locked in place in the compact by the binder after compact forming is complete. After removal from the device, the compact can be subjected to a subsequent sintering or other heat treating operation.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: November 29, 2022
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Aaron G. Kassen, Iver E. Anderson, Emma Marie Hamilton White, Matthew J. Kramer, David J. Byrd, Liangfa Hu
  • Patent number: 11453937
    Abstract: Magnet microstructure manipulation in the solid state by controlled application of a sufficient stress in a direction during high temperature annealing in a single-phase region of heat-treatable magnet alloys, e.g., alnico-type magnets is followed by magnetic annealing and draw annealing to improve coercivity and saturation magnetization properties. The solid-state process can be termed highly controlled abnormal grain growth (hereafter AGG) and will make aligned sintered anisotropic magnets that meet or exceed the magnetic properties of cast versions of the same alloy types.
    Type: Grant
    Filed: October 5, 2020
    Date of Patent: September 27, 2022
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Emma Marie Hamilton White, Matthew J. Kramer, Aaron G. Kassen, Kevin W. Dennis
  • Publication number: 20210147968
    Abstract: Magnet microstructure manipulation in the solid state by controlled application of a sufficient stress in a direction during high temperature annealing in a single-phase region of heat-treatable magnet alloys, e.g., alnico-type magnets is followed by magnetic annealing and draw annealing to improve coercivity and saturation magnetization properties. The solid-state process can be termed highly controlled abnormal grain growth (hereafter AGG) and will make aligned sintered anisotropic magnets that meet or exceed the magnetic properties of cast versions of the same alloy types.
    Type: Application
    Filed: October 5, 2020
    Publication date: May 20, 2021
    Inventors: Iver E. Anderson, Emma Marie Hamilton White, Matthew J. Kramer, Aaron G. Kassen, Kevin W. Dennis
  • Publication number: 20210060641
    Abstract: A method for gas atomization of a titanium alloy, nickel alloy, or other alumina (Al2O3)— forming alloy wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a passivation reaction film on the atomized particles wherein the reaction film retains a precursor halogen alloying element that is subsequently introduced into a microstructure formed by subsequent thermally processing of the atomized particles to improve oxidation resistance.
    Type: Application
    Filed: April 22, 2020
    Publication date: March 4, 2021
    Inventors: Andrew J. Heidloff, Joel R. Rieken, Iver E. Anderson
  • Patent number: 10851446
    Abstract: Magnet microstructure manipulation in the solid state by controlled application of a sufficient stress in a direction during high temperature annealing in a single-phase region of heat-treatable magnet alloys, e.g., alnico-type magnets is followed by magnetic annealing and draw annealing to improve coercivity and saturation magnetization properties. The solid-state process can be termed highly controlled abnormal grain growth (hereafter AGG) and will make aligned sintered anisotropic magnets that meet or exceed the magnetic properties of cast versions of the same alloy types.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: December 1, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Emma Marie Hamilton White, Matthew J. Kramer, Aaron G. Kassen, Kevin W. Dennis
  • Patent number: 10835959
    Abstract: A concentric ring gas atomization nozzle with isolated gas supply manifolds is provided for manipulating the close-coupled atomization gas structure to improve the yield of atomized powders.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: November 17, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Joel R. Rieken, Andrew J. Heidloff, Iver E. Anderson
  • Patent number: 10766831
    Abstract: A method for gas atomization of oxygen-reactive reactive metals and alloys wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a protective reaction film on the atomized particles. The present invention is especially useful for making highly pyrophoric reactive metal or alloy atomized powders, such as atomized magnesium and magnesium alloy powders. The gaseous reactive species (agents) are introduced into the atomization spray chamber at locations downstream of a gas atomizing nozzle as determined by the desired powder or particle temperature for the reactions and the desired thickness of the reaction film.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: September 8, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Andrew D. Steinmetz, David J. Byrd
  • Patent number: 10661339
    Abstract: A method for gas atomization of a titanium alloy, nickel alloy, or other alumina (Al2O3)-forming alloy wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a passivation reaction film on the atomized particles wherein the reaction film retains a precursor halogen alloying element that is subsequently introduced into a microstructure formed by subsequent thermally processing of the atomized particles to improve oxidation resistance.
    Type: Grant
    Filed: November 6, 2017
    Date of Patent: May 26, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Andrew J. Heidloff, Joel R. Rieken, Iver E. Anderson
  • Patent number: 10625378
    Abstract: A solder alloy includes Sn, optional Ag, Cu, and Al wherein the solder alloy composition together with the solder alloy superheat temperature and rapid cooling rate from the superheat temperature are controlled to provide a dispersion of fine hard Cu—Al intermetallic particles in an as-solidified solder alloy microstructure wherein the particles are retained even after multiple solder reflow cycles often used in modern electronic assembly procedures to provide a particle strengthening to the solder joint microstructure as well as exert a grain refining effect on the solder joint microstructure, providing a strong, impact- and thermal aging-resistant solder joint that has beneficial microstructural features and is substantially devoid of Ag3Sn blades.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: April 21, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Kathlene Nicole Reeve
  • Patent number: 10618854
    Abstract: A method for gas atomization of oxygen-reactive reactive metals and alloys wherein the atomized particles are exposed as they solidify and cool in a very short time to multiple gaseous reactive agents for the in-situ formation of a protective reaction film on the atomized particles. The present invention is especially useful for making highly pyrophoric reactive metal or alloy atomized powders, such as atomized magnesium and magnesium alloy powders. The gaseous reactive species (agents) are introduced into the atomization spray chamber at locations downstream of a gas atomizing nozzle as determined by the desired powder or particle temperature for the reactions and the desired thickness of the reaction film.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: April 14, 2020
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Andrew D. Steinmetz, David J. Byrd
  • Patent number: 10442037
    Abstract: A solder alloy includes Sn, optional Ag, Cu, and Al wherein the alloy composition is controlled to provide a strong, impact-and thermal aging-resistant solder joint that has beneficial microstructural features and is substantially devoid of Ag3Sn blades.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: October 15, 2019
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Joel L. Harringa, Adam J. Boesenberg
  • Publication number: 20190244734
    Abstract: Improved manufacturing processes and resulting anisotropic permanent magnets, such as for example alnico permanent magnets, having highly controlled and aligned microstructure in the solid state are provided. A certain process embodiment involves applying a particular orientation and strength of magnetic field to loose, binder-coated magnet alloy powder particles in a compact-forming device as they are being formed into a compact in order to preferentially align the magnet alloy powder particles in the compact. The preferential alignment of the magnet alloy powder particle is locked in place in the compact by the binder after compact forming is complete. After removal from the device, the compact can be subjected to a subsequent sintering or other heat treating operation.
    Type: Application
    Filed: November 7, 2018
    Publication date: August 8, 2019
    Inventors: Aaron G. Kassen, Iver E. Anderson, Emma Marie Hamilton White, Matthew J. Kramer, David J. Byrd, Liangfa Hu
  • Patent number: 10294548
    Abstract: The present invention relates to Cu33Al17 alloys and Cu33Al17-based bulk alloys and coatings that exhibit significantly increased hardness characteristics compared to traditional copper-aluminum alloys.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: May 21, 2019
    Assignee: U.S. Department of Energy
    Inventors: Iver E. Anderson, Bruce A. Cook, Joel Harringa, Adam Boesenberg, Joel Rieken, Dave Byrd
  • Publication number: 20190126355
    Abstract: A concentric ring gas atomization nozzle with isolated gas supply manifolds is provided for manipulating the close-coupled atomization gas structure to improve the yield of atomized powders.
    Type: Application
    Filed: May 2, 2018
    Publication date: May 2, 2019
    Inventors: Joel R. Rieken, Andrew J. Heidloff, Iver E. Anderson