Patents by Inventor Iver E. Anderson

Iver E. Anderson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5738705
    Abstract: Method and apparatus for making metallic powder particles wherein a metallic melt is atomized by a rotating disk or other atomizer at an atomizing location in a manner to form molten droplets moving in a direction away from said atomizing location. The atomized droplets pass through a series of thin liquid quenching sheets disposed in succession about the atomizing location with each successive quenching sheet being at an increasing distance from the atomizing location. The atomized droplets are incrementally cooled and optionally passivated as they pass through the series of liquid quenching sheets without distorting the atomized droplets from their generally spherical shape. The atomized, cooled droplets can be received in a chamber having a collection wall disposed outwardly of the series of liquid quenching sheets.
    Type: Grant
    Filed: November 20, 1995
    Date of Patent: April 14, 1998
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Matthew G. Osborne, Robert L. Terpstra
  • Patent number: 5589199
    Abstract: Apparatus and method for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment.
    Type: Grant
    Filed: October 24, 1994
    Date of Patent: December 31, 1996
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Barbara K. Lograsso, Robert L. Terpstra
  • Patent number: 5527628
    Abstract: A Pb-free solder includes a ternary eutectic composition consisting essentially of about 93.6 weight % Sn-about 4.7 weight % Ag-about 1.7 weight % Cu having a eutectic melting temperature of about 217.degree. C. and variants of the ternary composition wherein the relative concentrations of Sn, Ag, and Cu deviate from the ternary eutectic composition to provide a controlled melting temperature range (liquid-solid "mushy" zone) relative to the eutectic melting temperature (e.g. up to 15.degree. C. above the eutectic melting temperature).
    Type: Grant
    Filed: February 24, 1995
    Date of Patent: June 18, 1996
    Assignees: Iowa State University Research Foudation, Inc., Sandia Corporation
    Inventors: Iver E. Anderson, Frederick G. Yost, John F. Smith, Chad M. Miller, Robert L. Terpstra
  • Patent number: 5523049
    Abstract: A heat sink composed of thermally conductive particles dispersed in a monolithic structure having a continuous microstructure; and the method of forming a heat sink by molding the heat sink from a thermoplastic or epoxy material which has been filled with thermally conductive particles, debinding the molded heat sink and densifying the debound heat sink into a monolithic structure.
    Type: Grant
    Filed: November 1, 1994
    Date of Patent: June 4, 1996
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Robert L. Terpstra, Barbara K. Lograsso, Iver E. Anderson, Jeffrey A. Moore
  • Patent number: 5470401
    Abstract: An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.
    Type: Grant
    Filed: July 26, 1993
    Date of Patent: November 28, 1995
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: R. William McCallum, Kevin W. Dennis, Barbara K. Lograsso, Iver E. Anderson
  • Patent number: 5433978
    Abstract: A method of making quasicrystalline alloy particulates wherein an alloy is superheated and the melt is atomized to form generally spherical alloy particulates free of mechanical fracture and exhibiting a predominantly quasicrystalline in the atomized condition structure. The particulates can be plasma sprayed to form a coating or consolidated to form an article of manufacture.
    Type: Grant
    Filed: September 27, 1993
    Date of Patent: July 18, 1995
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Jeffrey E. Shield, Alan I. Goldman, Iver E. Anderson, Timothy W. Ellis, R. William McCallum, Daniel J. Sordelet
  • Patent number: 5423520
    Abstract: Melt atomizing apparatus comprising a melt supply orifice for supplying the melt for atomization and gas supply orifices proximate the melt supply orifice for supplying atomizing gas to atomize the melt as an atomization spray. The apparatus includes a sensor, such as an optical and/or audio sensor, for providing atomization spray data, and a control unit responsive to the sensed atomization spray data for controlling at least one of the atomizing gas pressure and an actuator to adjust the relative position of the gas supply orifice and melt supply in a manner to achieve a desired atomization spray.
    Type: Grant
    Filed: April 13, 1993
    Date of Patent: June 13, 1995
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Richard S. Figliola, Robert L. Terpstra
  • Patent number: 5372629
    Abstract: Apparatus and method for making powder from a metallic melt by atomizing the melt to form droplets and reacting the droplets downstream of the atomizing location with a reactive gas. The droplets are reacted with the gas at a temperature where a solidified exterior surface is formed thereon and where a protective refractory barrier layer (reaction layer) is formed whose penetration into the droplets is limited by the presence of the solidified surface so as to avoid selective reduction of key reactive alloyants needed to achieve desired powder end use properties. The barrier layer protects the reactive powder particles from environmental constituents such as air and water in the liquid or vapor form during subsequent fabrication of the powder to end-use shapes and during use in the intended service environment.
    Type: Grant
    Filed: August 5, 1992
    Date of Patent: December 13, 1994
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Barbara K. Lograsso, Robert L. Terpstra
  • Patent number: 5368657
    Abstract: A metallic melt is atomized using a high pressure atomizing gas wherein the temperature of the melt and the composition of the atomizing gas are selected such that the gas and melt react in the atomization spray zone to form a refractory or intermetallic compound in the as-atomized powder particles.A metallic melt is also atomized using a high pressure atomizing gas mixture gas wherein the temperature of the melt and the ratio of a reactive gas to a carrier gas are selected to form powder particles comprising a supersaturated solid solution of the atomic species of the reactive gas in the particles. The powder particles are then heat treated to precipitate dispersoids in-situ therein to form a dispersion strengthened material.
    Type: Grant
    Filed: April 13, 1993
    Date of Patent: November 29, 1994
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Barbara K. Lograsso, Timothy W. Ellis
  • Patent number: 5366688
    Abstract: A heat sink composed of metal particles dispersed in a binder or a sintered structure in which the binder is removed; and the method of forming a heat sink by molding the heat sink from a thermoplastic or epoxy material which has been filled with metal particles.
    Type: Grant
    Filed: March 10, 1994
    Date of Patent: November 22, 1994
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Robert L. Terpstra, Barbara K. Lograsso, Iver E. Anderson, Jeffrey A. Moore
  • Patent number: 5277705
    Abstract: Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet.
    Type: Grant
    Filed: December 30, 1992
    Date of Patent: January 11, 1994
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: Iver E. Anderson, Robert L. Terpstra, Jeffery A. Moore
  • Patent number: 5242508
    Abstract: A method for making an isotropic permanent magnet comprises atomizing a melt of a rare earth-transition metal alloy (e.g., an Nd--Fe--B alloy enriched in Nd and B) under conditions to produce protectively coated, rapidly solidified, generally spherical alloy particles wherein a majority of the particles are produced/size classified within a given size fraction (e.g., 5 to 40 microns diameter) exhibiting optimum as-atomized magnetic properties and subjecting the particles to concurrent elevated temperature and elevated isotropic pressure for a time effective to yield a densified, magnetically isotropic magnet compact having enhanced magnetic properties and mechanical properties.
    Type: Grant
    Filed: April 15, 1992
    Date of Patent: September 7, 1993
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: R. William McCallum, Kevin W. Dennis, Barbara K. Lograsso, Iver E. Anderson
  • Patent number: 5240513
    Abstract: An isotropic permanent magnet is made by mixing a thermally responsive, low viscosity binder and atomized rare earth-transition metal (e.g., iron) alloy powder having a carbon-bearing (e.g., graphite) layer thereon that facilitates wetting and bonding of the powder particles by the binder. Prior to mixing with the binder, the atomized alloy powder may be sized or classified to provide a particular particle size fraction having a grain size within a given relatively narrow range. A selected particle size fraction is mixed with the binder and the mixture is molded to a desired complex magnet shape. A molded isotropic permanent magnet is thereby formed. A sintered isotropic permanent magnet can be formed by removing the binder from the molded mixture and thereafter sintering to full density.
    Type: Grant
    Filed: October 9, 1990
    Date of Patent: August 31, 1993
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: R. William McCallum, Kevin W. Dennis, Barbara K. Lograsso, Iver E. Anderson
  • Patent number: 5228620
    Abstract: High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.
    Type: Grant
    Filed: June 19, 1992
    Date of Patent: July 20, 1993
    Assignee: Iowa State University Research Foundtion, Inc.
    Inventors: Iver E. Anderson, Richard S. Figliola, Holly M. Molnar
  • Patent number: 5125574
    Abstract: High pressure atomizing nozzle includes a high pressure gas manifold having a divergent expansion chamber between a gas inlet and arcuate manifold segment to minimize standing shock wave patterns in the manifold and thereby improve filling of the manifold with high pressure gas for improved melt atomization. The atomizing nozzle is especially useful in atomizing rare earth-transition metal alloys to form fine powder particles wherein a majority of the powder particles exhibit particle sizes having near-optimum magnetic properties.
    Type: Grant
    Filed: October 9, 1990
    Date of Patent: June 30, 1992
    Assignee: Iowa State University Research Foundation
    Inventors: Iver E. Anderson, Richard S. Figliola, Holly M. Molnar
  • Patent number: 5073409
    Abstract: Fine metal alloy powders coated with a protective film are disclosed which re produced by the gas atomization process. The protective films are formed during the gas atomization process by gas atomizing a molten mixture of a metal alloy containing an alloy addition agent in an atomizing gas which will selectively react with the alloy addition agent to form a thin protective film on the surface of the metal powder.
    Type: Grant
    Filed: June 28, 1990
    Date of Patent: December 17, 1991
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Iver E. Anderson, Jack D. Ayers
  • Patent number: 5043025
    Abstract: A particulate mixture of Cu and Fe is compacted and mechanically reduced to form an "in-situ" Cu-Fe composite having high strength and high conductivity. Compaction and mechanical reduction of the particulate mixture are carried out at a temperature and time at temperature selected to avoid dissolution of Fe into the Cu matrix particulates to a harmful extent that substantially degrades the conductivity of the Cu-Fe composite.
    Type: Grant
    Filed: June 12, 1990
    Date of Patent: August 27, 1991
    Assignee: Iowa State University Research Foundation, Inc.
    Inventors: John D. Verhoeven, William A. Spitzig, Edwin D. Gibson, Iver E. Anderson
  • Patent number: 4619845
    Abstract: A method for generating fine sprays of molten metal for spray coating and wder making is disclosed. Liquid metal is fed via a melt tube to a nozzle that is shaped like the frustrum of a cone. The nozzle is surrounded with gas jets in a coaxial pattern around the melt tube orifice. High pressure gas causes the formation of a low pressure region immediately next to the melt tube orifice that draws metal out of the orifice at a higher rate than would otherwise be the case. The coaxial gas stream atomizes the metal into droplets and thereafter forms a narrow, supersonic spray containing very fine metal droplets suitable for powder making or application of a coating.
    Type: Grant
    Filed: February 22, 1985
    Date of Patent: October 28, 1986
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jack D. Ayers, Iver E. Anderson