Patents by Inventor J. Donald Carruthers

J. Donald Carruthers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150027909
    Abstract: A pyrolyzed monolith carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter<2 nanometers; and (c) having a bulk density of from about 0.80 to about 2.0 grams per cubic centimeter, preferably from 0.9 to 2.0 grams per cubic centimeter.
    Type: Application
    Filed: October 14, 2014
    Publication date: January 29, 2015
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventor: J. Donald Carruthers
  • Patent number: 8882889
    Abstract: A system and method for recovering high value gas from a process stream, material or environment containing same, e.g., xenon by contacting gas from the process stream, material or environment with a carbon adsorbent effective to sorptively capture same, free of or with reduced concentration of fluid species present with the high value gas in the high value gas-containing gas in the process stream, material or environment. Other aspects of the disclosure include a radon detection method and product.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: November 11, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Thomas H. Baum, J. Donald Carruthers, Richard Fricke, Joshua B. Sweeney, James V. McManus, Edward A. Sturm
  • Patent number: 8858685
    Abstract: A pyrolyzed monolith carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter <2 nanometers; and (c) having a bulk density of from about 0.80 to about 2.0 grams per cubic centimeter, preferably from 0.9 to 2.0 grams per cubic centimeter.
    Type: Grant
    Filed: August 31, 2012
    Date of Patent: October 14, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventor: J. Donald Carruthers
  • Publication number: 20140298992
    Abstract: A carbon pyrolyzate adsorbent is described that is selective for carbon dioxide in contact with gas mixtures including carbon dioxide and methane. The adsorbent has a carbon dioxide adsorbent capacity at 1 bar pressure of greater than 50 cm3 carbon dioxide per gram of adsorbent at 273K, a methane adsorption capacity at 1 bar pressure of less than 35 cm3 methane per gram of adsorbent at 21° C., and a bulk density of greater than 0.55 gram per cubic centimeter of volume. Such adsorbent can be utilized, for example, for biogas upgrading, natural gas purification, coal bed methane purification, and refining operations.
    Type: Application
    Filed: April 5, 2013
    Publication date: October 9, 2014
    Applicant: Advanced Technology Materials, Inc.
    Inventors: J. Donald Carruthers, Melissa A. Petruska, Shaun M. Wilson, Edward A. Sturm
  • Publication number: 20140234436
    Abstract: A system and process for generating and packaging phosphine gas, in which the process includes: reacting water and aluminum phosphide to generate phosphine, and providing the phosphine in a gas mixture at a phosphine concentration below a lower explosive limit; adsorptively removing phosphine from the gas mixture; and packaging the removed phosphine in a fluid storage and dispensing vessel.
    Type: Application
    Filed: June 12, 2012
    Publication date: August 21, 2014
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: James V. McManus, Edward A. Sturm, Thomas H. Baum, J. Donald Carruthers, Joshua B. Sweeney
  • Publication number: 20140027352
    Abstract: A carbon adsorbent having the characteristics of: a nitrogen micropore volume at 77° K, measured as liquid capacity, that is greater than 0.30 mL/g; a neopentane capacity measured at 273° K and 1 bar, measured as liquid capacity, that is less than 7% of the nitrogen micropore volume, measured as liquid capacity; and an access pore size in a range of from 0.50 to 0.62 nm. Such adsorbent is usefully employed for contacting with hydrocarbon mixtures to adsorb low-octane, linear and mono- or di-substituted alkanes therefrom, and thereby increase octane rating, e.g., of an isomerization naphtha raffinate. Adsorption processes and apparatus are also described, in which the carbon adsorbent can be utilized for production of higher octane rating hydrocarbon mixtures.
    Type: Application
    Filed: April 17, 2012
    Publication date: January 30, 2014
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Melissa A. Petruska, J. Donald Carruthers, Edward A. Sturm, Shaun M. Wilson, Joshua B. Sweeney
  • Publication number: 20140020419
    Abstract: An adsorption structure is described that includes at least one adsorbent member formed of an adsorbent material and at least one porous member provided in contact with a portion of the adsorbent member to allow gas to enter and exit the portion of the adsorbent member. Such adsorption structure is usefully employed in adsorbent-based refrigeration systems. A method also is described for producing an adsorbent material, in which a first polymeric material provided having a first density and a second polymeric material is provided having a second density, in which the second polymeric material is in contact with the first polymeric material to form a structure. The structure is pyrolyzed to form a porous adsorbent material including a first region corresponding to the first polymeric material and a second region corresponding to the second polymeric material, in which at least one of the pore sizes and the pore distribution differs between the first region and the second region.
    Type: Application
    Filed: September 24, 2013
    Publication date: January 23, 2014
    Applicant: Advanced Technology Materials, Inc.
    Inventors: J. Donald Carruthers, Karl Boggs, Luping Wang, Shaun M. Wilson, Jose I. Arno, Paul J. Marganski, Steven M. Bilodeau, Peng Zou, Brian Bobita, Joseph D. Sweeney
  • Publication number: 20130334068
    Abstract: A fluid storage and dispensing apparatus including a fluid storage and dispensing vessel having a rectangular parallelepiped shape, and an integrated gas cabinet assembly including such fluid storage and dispensing apparatus and/or a point-of-use ventilation gas scrubber in the vented gas cabinet. By the use of physical adsorbent and chemical sorbent media, the gas cabinet can be enhanced in safety of operation, e.g., where the process gas supplied from the gas cabinet is of a toxic or otherwise hazardous character.
    Type: Application
    Filed: August 13, 2013
    Publication date: December 19, 2013
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Dennis Brestovansky, Michael J. Wodjenski, Jose I. Arno, J. Donald Carruthers, Phillip A. Moroco
  • Publication number: 20130324397
    Abstract: A durable carbon pyrolyzate adsorbent having reversible sorptive affinity for hydrogen sulfide, and including the following characteristics: (a) a bulk density as measured by ASTM D2854 in a range of from 0.55 g/cc adsorbent to 1.25 g/cc adsorbent; (b) an H2S capacity in a range of from 140 cc H2S/g adsorbent to 250 cc H2S/g adsorbent, at normal conditions (1 atm, 293.15° K); (c) an H2S capacity in a range of from 1.0 cc H2S/g adsorbent to 15.0 cc H2S/g adsorbent, at partial pressure of 0.76 ton (101.3 Pa) (1000 ppm) of H2S at 293.15° K; and (d) a single pellet radial crush strength in a range of from 7 kilopond (kP) to 40 kilopond (kP) as measured by ASTM D4179.
    Type: Application
    Filed: May 29, 2013
    Publication date: December 5, 2013
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Shaun M. Wilson, Edward A. Sturm, Michael J. Wodjenski, J. Donald Carruthers, Joshua B. Sweeney
  • Publication number: 20130298769
    Abstract: A particulate form carbon pyrolyzate adsorbent, having the following characteristics: (a) CO2 capacity greater than 105 cc/gram at one bar pressure and temperature of 273° Kelvin; (b) CO2 Working Capacity greater than 7.0 weight percent; (c) CO2 heats of adsorption and desorption each of which is in a range of from 10 to 50 kJ/mole; and (d) a CO2/N2 Henry's Law Separation Factor greater than 5. The carbon pyrolyzate material can be formed from a polyvinylidene chloride-based polymer or copolymer, or other suitable resin material, to provide an adsorbent that is useful for carbon dioxide capture applications, e.g., in treatment of flue gases from coal-fired power generation plants.
    Type: Application
    Filed: January 29, 2012
    Publication date: November 14, 2013
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Melissa A. Petruska, J. Donald Carruthers, Edward A. Sturm, Shaun M. Wilson, Joshua B. Sweeney
  • Patent number: 8562937
    Abstract: A method and apparatus for manufacture of carbon nanotubes, in which a substrate is contacted with a hydrocarbonaceous feedstock containing a catalytically effective metal to deposit the feedstock on the substrate, followed by oxidation of the deposited feedstock to remove hydrocarbonaceous and carbonaceous components from the substrate, while retaining the catalytically effective metal thereon, and contacting of the substrate having retained catalytically effective metal thereon with a carbon source material to grow carbon nanotubes on the substrate. The manufacture can be carried out with a petroleum feedstock such as an oil refining atmospheric tower residue, to produce carbon nanotubes in high volume at low cost. Also disclosed is a composite including porous material having single-walled carbon nanotubes in pores thereof.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: October 22, 2013
    Assignee: Nantero Inc.
    Inventors: J. Donald Carruthers, Xueping Xu, Luping Wang
  • Patent number: 8539781
    Abstract: An adsorption structure is described that includes at least one adsorbent member formed of an adsorbent material and at least one porous member provided in contact with a portion of the adsorbent member to allow gas to enter and exit the portion of the adsorbent member. Such adsorption structure is usefully employed in adsorbent-based refrigeration systems. A method also is described for producing an adsorbent material, in which a first polymeric material is provided having a first density and a second polymeric material is provided having a second density, in which the second polymeric material is in contact with the first polymeric material to form a structure. The structure is pyrolyzed to form a porous adsorbent material including a first region corresponding to the first polymeric material and a second region corresponding to the second polymeric material, in which at least one of the pore sizes and the pore distribution differs between the first region and the second region.
    Type: Grant
    Filed: June 22, 2008
    Date of Patent: September 24, 2013
    Assignee: Advanced Technology Materials, Inc.
    Inventors: J. Donald Carruthers, Karl Boggs, Luping Wang, Shaun Wilson, Jose I. Arno, Paul J. Marganski, Steven M. Bilodeau, Peng Zou, Brian Bobita, Joseph D. Sweeney, Douglas Edwards
  • Patent number: 8506689
    Abstract: A fluid storage and dispensing apparatus including a fluid storage and dispensing vessel having a rectangular parallelepiped shape, and an integrated gas cabinet assembly including such fluid storage and dispensing apparatus and/or a point-of-use ventilation gas scrubber in the vented gas cabinet. By the use of physical adsorbent and chemical sorbent media, the gas cabinet can be enhanced in safety of operation, e.g., where the process gas supplied from the gas cabinet is of a toxic or otherwise hazardous character.
    Type: Grant
    Filed: June 26, 2011
    Date of Patent: August 13, 2013
    Assignee: Advanced Technology Mateials, Inc.
    Inventors: Dennis Brestovansky, Michael J. Wodjenski, Jose I. Arno, J. Donald Carruthers, Judith A. Moroco
  • Publication number: 20130112076
    Abstract: A system and method for recovering high value gas from a process stream, material or environment containing same, e.g., xenon by contacting gas from the process stream, material or environment with a carbon adsorbent effective to sorptively capture same, free of or with reduced concentration of fluid species present with the high value gas in the high value gas-containing gas in the process stream, material or environment. Other aspects of the disclosure include a radon detection method and product.
    Type: Application
    Filed: June 22, 2011
    Publication date: May 9, 2013
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Thomas H. Baum, J. Donald Carruthers, Richard Fricke, Joshua B. Sweeney, James V. McManus, Edward A. Sturm
  • Publication number: 20120325850
    Abstract: A pyrolyzed monolith carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter<2 nanometers; and (c) having a bulk density of from about 0.80 to about 2.0 grams per cubic centimeter, preferably from 0.9 to 2.0 grams per cubic centimeter.
    Type: Application
    Filed: August 31, 2012
    Publication date: December 27, 2012
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventor: J. Donald Carruthers
  • Publication number: 20120305450
    Abstract: A method is provided for producing an ultra-low sulfur hydrocarbon product from a hydrocarbon feedstock containing refractory sulfur compounds utilizing a carbon adsorbent. Also described is a hydrocarbon processing system configured to produce an ultra-low sulfur hydrocarbon product from hydrocarbon feedstock containing refractory sulfur compounds. The hydrocarbon processing system also utilizes a carbon adsorbent.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 6, 2012
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: J. Donald Carruthers, Frank Dimeo, JR., Brian Bobita
  • Patent number: 8282714
    Abstract: A pyrolyzed monolith carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter<2 nanometers; and (c) having a bulk density of from about 0.80 to about 2.0 grams per cubic centimeter, preferably from 0.9 to 2.0 grams per cubic centimeter.
    Type: Grant
    Filed: August 23, 2011
    Date of Patent: October 9, 2012
    Assignee: Advanced Technology Materials, Inc.
    Inventor: J. Donald Carruthers
  • Patent number: 8221532
    Abstract: An adsorbent having porosity expanded by contact with a first agent effecting such expansion and a pressurized second agent effecting transport of the first agent into the porosity, wherein the adsorbent subsequent to removal of the first and second agents retains expanded porosity. The adsorbent can be made by an associated method in which materials such as water, ethers, alcohols, organic solvent media, or inorganic solvent media can be utilized as the first agent for swelling of the porosity, and helium, argon, krypton, xenon, neon, or other inert gases can be employed as the pressurized second agent for transport of both agents into the porosity of the adsorbent, subsequent to which the agents can be removed to yield an adsorbent of increased capacity for sorbable fluids, e.g., organometallic compounds, hydrides, halides and acid gases.
    Type: Grant
    Filed: January 4, 2011
    Date of Patent: July 17, 2012
    Inventors: J. Donald Carruthers, Frank Dimeo, Jr., Brian Bobita
  • Publication number: 20110303558
    Abstract: A pyrolyzed monolith carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter<2 nanometers; and (c) having a bulk density of from about 0.80 to about 2.0 grams per cubic centimeter, preferably from 0.9 to 2.0 grams per cubic centimeter.
    Type: Application
    Filed: August 23, 2011
    Publication date: December 15, 2011
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventor: J. Donald Carruthers
  • Publication number: 20110277846
    Abstract: A fluid storage and dispensing apparatus including a fluid storage and dispensing vessel having a rectangular parallelepiped shape, and an integrated gas cabinet assembly including such fluid storage and dispensing apparatus and/or a point-of-use ventilation gas scrubber in the vented gas cabinet. By the use of physical adsorbent and chemical sorbent media, the gas cabinet can be enhanced in safety of operation, e.g., where the process gas supplied from the gas cabinet is of a toxic or otherwise hazardous character.
    Type: Application
    Filed: June 26, 2011
    Publication date: November 17, 2011
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: Dennis Brestovansky, Michael J. Wodjenski, Jose I. Arno, J. Donald Carruthers, Philip A. Moroco, Judith A. Moroco