Patents by Inventor J. Donald Carruthers

J. Donald Carruthers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110220518
    Abstract: An adsorbent having porosity expanded by contact with a first agent effecting such expansion and a pressurized second agent effecting transport of the first agent into the porosity, wherein the adsorbent subsequent to removal of the first and second agents retains expanded porosity. The adsorbent can be made by an associated method in which materials such as water, ethers, alcohols, organic solvent media, or inorganic solvent media can be utilized as the first agent for swelling of the porosity, and helium, argon, krypton, xenon, neon, or other inert gases can be employed as the pressurized second agent for transport of both agents into the porosity of the adsorbent, subsequent to which the agents can be removed to yield an adsorbent of increased capacity for sorbable fluids, e.g., organometallic compounds, hydrides, halides and acid gases.
    Type: Application
    Filed: January 4, 2011
    Publication date: September 15, 2011
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: J. Donald Carruthers, Frank Dimeo, JR., Brian Bobita
  • Patent number: 8002880
    Abstract: A pyrolyzed monolith carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter<2 nanometers; and (c) having a bulk density of from about 0.80 to about 2.0 grams per cubic centimeter, preferably from 0.9 to 2.0 grams per cubic centimeter.
    Type: Grant
    Filed: February 24, 2009
    Date of Patent: August 23, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventor: J. Donald Carruthers
  • Patent number: 7972421
    Abstract: A fluid storage and dispensing apparatus including a fluid storage and dispensing vessel having a rectangular parallelepiped shape, and an integrated gas cabinet assembly including such fluid storage and dispensing apparatus and/or a point-of-use ventilation gas scrubber in the vented gas cabinet. By the use of physical adsorbent and chemical sorbent media, the gas cabinet can be enhanced in safety of operation, e.g., where the process gas supplied from the gas cabinet is of a toxic or otherwise hazardous character.
    Type: Grant
    Filed: March 10, 2009
    Date of Patent: July 5, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Dennis Brestovansky, Michael J. Wodjenski, Jose I. Arno, J. Donald Carruthers, Phillip A. Moroco, Judith A. Moroco, legal representative
  • Publication number: 20110048063
    Abstract: An adsorption structure is described that includes at least one adsorbent member formed of an adsorbent material and at least one porous member provided in contact with a portion of the adsorbent member to allow gas to enter and exit the portion of the adsorbent member. Such adsorption structure is usefully employed in adsorbent-based refrigeration systems. A method also is described for producing an adsorbent material, in which a first polymeric material is provided having a first density and a second polymeric material is provided having a second density, in which the second polymeric material is in contact with the first polymeric material to form a structure. The structure is pyrolyzed to form a porous adsorbent material including a first region corresponding to the first polymeric material and a second region corresponding to the second polymeric material, in which at least one of the pore sizes and the pore distribution differs between the first region and the second region.
    Type: Application
    Filed: June 22, 2008
    Publication date: March 3, 2011
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: J. Donald Carruthers, Karl Boggs, Luping Wang, Shaun Wilson, Jose I. Arno, Paul J. Marganski, Steven M. Bilodeau, Peng Zou, Brian Bobita, Joseph D. Sweeney, Douglas Edwards
  • Patent number: 7862646
    Abstract: An adsorbent having porosity expanded by contact with a first agent effecting such expansion and a pressurized second agent effecting transport of the first agent into the porosity, wherein the adsorbent subsequent to removal of the first and second agents retains expanded porosity. The adsorbent can be made by an associated method in which materials such as water, ethers, alcohols, organic solvent media, or inorganic solvent media can be utilized as the first agent for swelling of the porosity, and helium, argon, krypton, xenon, neon, or other inert gases can be employed as the pressurized second agent for transport of both agents into the porosity of the adsorbent, subsequent to which the agents can be removed to yield an adsorbent of increased capacity for sorbable fluids, e.g., organometallic compounds, hydrides, halides and acid gases.
    Type: Grant
    Filed: July 30, 2008
    Date of Patent: January 4, 2011
    Assignee: Advanced Technology Materials, Inc.
    Inventors: J. Donald Carruthers, Frank Dimeo, Jr., Brian Bobita
  • Publication number: 20100316562
    Abstract: An apparatus and method including storage and dispensing vessels to safely store and dispense gaseous hydrides, where the storage and dispensing vessels contain a solid-phase physical sorbent medium having a physically sorptive affinity for gaseous hydrides, and wherein the gaseous hydride is decomposed in the apparatus to generate hydrogen gas. The gaseous hydrides include, but are not limited to, silane, germane, stibine and diborane. The gaseous hydrides decompose spontaneously and/or decomposition is enhanced using surface modified adsorbents. The hydrogen generated by the apparatus may be used in a fuel cell or other hydrogen gas consuming unit.
    Type: Application
    Filed: August 21, 2010
    Publication date: December 16, 2010
    Applicant: Advanced Technology Materials, Inc.
    Inventors: J. Donald CARRUTHERS, Jose I. ARNO
  • Patent number: 7780747
    Abstract: An apparatus and method including storage and dispensing vessels to safely store and dispense gaseous hydrides, where the storage and dispensing vessels contain a solid-phase physical sorbent medium having a physically sorptive affinity for gaseous hydrides, and wherein the gaseous hydride is decomposed in the apparatus to generate hydrogen gas. The gaseous hydrides include, but are not limited to, silane, germane, stibine and diborane. The gaseous hydrides decompose spontaneously and/or decomposition is enhanced using surface modified adsorbents. The hydrogen generated by the apparatus may be used in a fuel cell or other hydrogen gas consuming unit.
    Type: Grant
    Filed: October 14, 2004
    Date of Patent: August 24, 2010
    Assignee: Advanced Technology Materials, Inc.
    Inventors: J. Donald Carruthers, Jose I. Arno
  • Publication number: 20090188392
    Abstract: A pyrolyzed monolith carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter<2 nanometers; and (c) having a bulk density of from about 0.80 to about 2.0 grams per cubic centimeter, preferably from 0.9 to 2.0 grams per cubic centimeter.
    Type: Application
    Filed: February 24, 2009
    Publication date: July 30, 2009
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventor: J. Donald Carruthers
  • Publication number: 20090173225
    Abstract: A fluid storage and dispensing apparatus including a fluid storage and dispensing vessel having a rectangular parallelepiped shape, and an integrated gas cabinet assembly including such fluid storage and dispensing apparatus and/or a point-of-use ventilation gas scrubber in the vented gas cabinet. By the use of physical adsorbent and chemical sorbent media, the gas cabinet can be enhanced in safety of operation, e.g., where the process gas supplied from the gas cabinet is of a toxic or otherwise hazardous character.
    Type: Application
    Filed: March 10, 2009
    Publication date: July 9, 2009
    Applicant: Advanced Technology Materials, Inc.
    Inventors: Dennis Brestovansky, Michael J. Wodjenski, Jose I. Arno, J. Donald Carruthers, Philip A. Moroco, Judith A. Moroco
  • Publication number: 20090099016
    Abstract: A method and apparatus for manufacture of carbon nanotubes, in which a substrate is contacted with a hydrocarbonaceous feedstock containing a catalytically effective metal to deposit the feedstock on the substrate, followed by oxidation of the deposited feedstock to remove hydrocarbonaceous and carbonaceous components from the substrate, while retaining the catalytically effective metal thereon, and contacting of the substrate having retained catalytically effective metal thereon with a carbon source material to grow carbon nanotubes on the substrate. The manufacture can be carried out with a petroleum feedstock such as an oil refining atmospheric tower residue, to produce carbon nanotubes in high volume at low cost. Also disclosed is a composite including porous material having single-walled carbon nanotubes in pores thereof.
    Type: Application
    Filed: December 19, 2006
    Publication date: April 16, 2009
    Applicant: ADVANCED TECHNOLOGY MATERIALS, INC.
    Inventors: J. Donald Carruthers, Xueping Xu, Luping Wang
  • Patent number: 7501010
    Abstract: A fluid storage and dispensing apparatus including a fluid storage and dispensing vessel having a rectangular parallelepiped shape, and an integrated gas cabinet assembly including such fluid storage and dispensing apparatus and/or a point-of-use ventilation gas scrubber in the vented gas cabinet. By the use of physical adsorbent and chemical sorbent media, the gas cabinet can be enhanced in safety of operation, e.g., where the process gas supplied from the gas cabinet is of a toxic or otherwise hazardous character.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: March 10, 2009
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Dennis Brestovansky, Michael J. Wodjenski, Jose I. Arno, J. Donald Carruthers, Judith A. Moroco, legal representative, Philip A. Moroco
  • Patent number: 7494530
    Abstract: A fluid storage and dispensing apparatus, including a cylindrical fluid storage and dispensing vessel having an interior volume, in which the interior volume contains a physical adsorbent for sorptively retaining a fluid thereon and from which the fluid is desorbable for dispensing from the vessel, and a valve head coupled to the vessel for dispensing desorbed fluid from the vessel. The physical adsorbent includes a monolithic carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter <2 nanometers; and (c) having a bulk density of from about 0.80 to about 2.0 grams per cubic centimeter.
    Type: Grant
    Filed: April 11, 2005
    Date of Patent: February 24, 2009
    Assignee: Advanced Technology Materials, Inc.
    Inventor: J. Donald Carruthers
  • Publication number: 20080302246
    Abstract: An adsorbent having porosity expanded by contact with a first agent effecting such expansion and a pressurized second agent effecting transport of the first agent into the porosity, wherein the adsorbent subsequent to removal of the first and second agents retains expanded porosity. The adsorbent can be made by an associated method in which materials such as water, ethers, alcohols, organic solvent media, or inorganic solvent media can be utilized as the first agent for swelling of the porosity, and helium, argon, krypton, xenon, neon, or other inert gases can be employed as the pressurized second agent for transport of both agents into the porosity of the adsorbent, subsequent to which the agents can be removed to yield an adsorbent of increased capacity for sorbable fluids, e.g., organometallic compounds, hydrides, halides and acid gases.
    Type: Application
    Filed: July 30, 2008
    Publication date: December 11, 2008
    Applicant: Advanced Technology Materials, Inc.
    Inventors: J. Donald Carruthers, Frank Dimeo, JR., Brian Bobita
  • Patent number: 7455719
    Abstract: A fluid storage and dispensing apparatus, including a fluid storage and dispensing vessel having an interior volume, in which the interior volume contains a physical adsorbent sorptively retaining a fluid thereon and from which the fluid is desorbable for dispensing from the vessel, and a dispensing assembly coupled to the vessel for dispensing desorbed fluid from the vessel. The physical adsorbent includes a monolithic carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter <2 nanometers; and (c) having been formed by pyrolysis and optional activation, at temperature(s) below 1000° C.
    Type: Grant
    Filed: September 6, 2005
    Date of Patent: November 25, 2008
    Assignee: Advanced Technology Materials, Inc.
    Inventor: J. Donald Carruthers
  • Patent number: 6991671
    Abstract: A fluid storage and dispensing apparatus including a fluid storage and dispensing vessel having a rectangular parallelepiped shape, and an integrated gas cabinet assembly including such fluid storage and dispensing apparatus and/or a point-of-use ventilation gas scrubber in the vented gas cabinet. By the use of physical adsorbent and chemical sorbent media, the gas cabinet can be enhanced in safety of operation, e.g., where the process gas supplied from the gas cabinet is of a toxic or otherwise hazardous character.
    Type: Grant
    Filed: December 9, 2002
    Date of Patent: January 31, 2006
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Dennis Brestovansky, Michael J. Wodjenski, Jose I. Arno, J. Donald Carruthers
  • Patent number: 6939394
    Abstract: A fluid storage and dispensing apparatus, including a fluid storage and dispensing vessel having an interior volume, in which the interior volume contains a physical adsorbent sorptively retaining a fluid thereon and from which the fluid is desorbable for dispensing from the vessel, and a dispensing assembly coupled to the vessel for dispensing desorbed fluid from the vessel. The physical adsorbent includes a monolithic carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter <2 nanometers; and (c) having been formed by pyrolysis and optional activation, at temperature(s) below 1000° C.
    Type: Grant
    Filed: January 29, 2004
    Date of Patent: September 6, 2005
    Assignee: Advanced Technology Materials, Inc.
    Inventor: J. Donald Carruthers
  • Publication number: 20040185254
    Abstract: A fluid storage and dispensing apparatus, including a fluid storage and dispensing vessel having an interior volume, in which the interior volume contains a physical adsorbent sorptively retaining a fluid thereon and from which the fluid is desorbable for dispensing from the vessel, and a dispensing assembly coupled to the vessel for dispensing desorbed fluid from the vessel. The physical adsorbent includes a monolithic carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter <2 nanometers; and (c) having been formed by pyrolysis and optional activation, at temperature(s) below 1000° C.
    Type: Application
    Filed: January 29, 2004
    Publication date: September 23, 2004
    Inventor: J. Donald Carruthers
  • Publication number: 20040118286
    Abstract: A fluid storage and dispensing apparatus including a fluid storage and dispensing vessel having a rectangular parallelepiped shape, and an integrated gas cabinet assembly including such fluid storage and dispensing apparatus and/or a point-of-use ventilation gas scrubber in the vented gas cabinet. By the use of physical adsorbent and chemical sorbent media, the gas cabinet can be enhanced in safety of operation, e.g., where the process gas supplied from the gas cabinet is of a toxic or otherwise hazardous character.
    Type: Application
    Filed: December 9, 2002
    Publication date: June 24, 2004
    Inventors: Dennis Brestovansky, Michael J. Wodjenski, Jose I. Arno, J. Donald Carruthers
  • Publication number: 20040107838
    Abstract: A fluid storage and dispensing apparatus, including a fluid storage and dispensing vessel having an interior volume, in which the interior volume contains a physical adsorbent sorptively retaining a fluid thereon and from which the fluid is desorbable for dispensing from the vessel, and a dispensing assembly coupled to the vessel for dispensing desorbed fluid from the vessel. The physical adsorbent includes a monolithic carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter <2 nanometers; and (c) having been formed by pyrolysis and optional activation, at temperature(s) below 1000° C.
    Type: Application
    Filed: December 10, 2002
    Publication date: June 10, 2004
    Inventor: J. Donald Carruthers
  • Patent number: 6743278
    Abstract: A fluid storage and dispensing apparatus, including a fluid storage and dispensing vessel having an interior volume, in which the interior volume contains a physical adsorbent sorptively retaining a fluid thereon and from which the fluid is desorbable for dispensing from the vessel, and a dispensing assembly coupled to the vessel for dispensing desorbed fluid from the vessel. The physical adsorbent includes a monolithic carbon physical adsorbent that is characterized by at least one of the following characteristics: (a) a fill density measured for arsine gas at 25° C. and pressure of 650 torr that is greater than 400 grams arsine per liter of adsorbent; (b) at least 30% of overall porosity of the adsorbent including slit-shaped pores having a size in a range of from about 0.3 to about 0.72 nanometer, and at least 20% of the overall porosity including micropores of diameter <2 nanometers; and (c) having been formed by pyrolysis and optional activation, at temperature(s) below 1000° C.
    Type: Grant
    Filed: December 10, 2002
    Date of Patent: June 1, 2004
    Assignee: Advanced Technology Materials, Inc.
    Inventor: J. Donald Carruthers