Patents by Inventor Jürgen Popp

Jürgen Popp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240286978
    Abstract: A process for the purification of isobutene from a C4 stream with at least 1-butene, 2-butene, isobutane and isobutene includes isomerizing 1-butene from a stream of material which is concentrated in isobutane and isobutene obtained from the C4 stream into 2-butene, using a catalyst in an isomerization reactor; supplying a product stream from the isomerization reactor to a rectification column; and providing a stream of material which is concentrated in isobutene. A processing facility is utilized for the purification of isobutene from the C4 stream.
    Type: Application
    Filed: May 7, 2024
    Publication date: August 29, 2024
    Inventors: Suman THOTLA, Pawel Tadeusz CZAJKA, Stefan Manfred ISELBORN, Kai-Uwe WEMHÖNER, Jürgen POPP
  • Patent number: 12006285
    Abstract: A process for the purification of isobutene from a C4 stream with at least 1-butene, 2-butene, isobutane and isobutene includes isomerizing 1-butene from a stream of material which is concentrated in isobutane and isobutene obtained from the C4 stream into 2-butene, using a catalyst in an isomerization reactor; supplying a product stream from the isomerization reactor to a rectification column; and providing a stream of material which is concentrated in isobutene. A processing facility is utilized for the purification of isobutene from the C4 stream.
    Type: Grant
    Filed: March 2, 2023
    Date of Patent: June 11, 2024
    Assignees: OMV DOWNSTREAM GMBH, BASF SE
    Inventors: Suman Thotla, Pawel Tadeusz Czajka, Stefan Manfred Iselborn, Kai-Uwe Wemhöner, Jürgen Popp
  • Publication number: 20230202948
    Abstract: A process for the purification of isobutene from a C4 stream with at least 1-butene, 2-butene, isobutane and isobutene includes isomerizing 1-butene from a stream of material which is concentrated in isobutane and isobutene obtained from the C4 stream into 2-butene, using a catalyst in an isomerization reactor; supplying a product stream from the isomerization reactor to a rectification column; and providing a stream of material which is concentrated in isobutene. A processing facility is utilized for the purification of isobutene from the C4 stream.
    Type: Application
    Filed: March 2, 2023
    Publication date: June 29, 2023
    Inventors: Suman THOTLA, Pawel Tadeusz CZAJKA, Stefan Manfred ISELBORN, Kai-Uwe WEMHÖNER, Jürgen POPP
  • Patent number: 11649197
    Abstract: A process for the purification of isobutene from a C4 stream with at least 1-butene, 2-butene, isobutane and isobutene includes isomerizing 1-butene from a stream of material which is concentrated in isobutane and isobutene obtained from the C4 stream into 2-butene, using a catalyst in an isomerization reactor; supplying a product stream from the isomerization reactor to a rectification column; and providing a stream of material which is concentrated in isobutene. A processing facility is utilized for the purification of isobutene from the C4 stream.
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: May 16, 2023
    Assignees: OMV DOWNSTREAM GMBH, BASF SE
    Inventors: Suman Thotla, Pawel Tadeusz Czajka, Stefan Manfred Iselborn, Kai-Uwe Wemhöner, Jürgen Popp
  • Patent number: 11599738
    Abstract: Method for examining a multiplicity of distributed objects (1) by using an overview image (200) of the area (2) in which the objects (1) are distributed, wherein the overview image (200) is converted (110) into a binary image (210) by virtue of the intensity values (202) of the pixels (201) of the overview image (200) being classified (202a, 202b) as to whether they are on the near or far side of a prescribed threshold (208); the binary image (210) is cleared (120) of structures (219) that are smaller than the objects (1), so that a cleared image (220) is produced; and the cleared image (220) is morphologically closed (130), so that a binary object mask (230) is produced that indicates which locations in the area (2) belong to objects (1) and which locations in the area (2) do not belong to an object.
    Type: Grant
    Filed: March 17, 2017
    Date of Patent: March 7, 2023
    Assignee: Leibniz-Institut FÜR Photonische Technologien E.V.
    Inventors: Iwan W. Schie, Christoph Krafft, Jürgen Popp
  • Patent number: 11262312
    Abstract: An exemplary laser microscope can be provided, comprising at least one first laser source which emits at least one (e.g., pulsed) excitation beam, a scanning optical configuration (e.g., configured to scan the excitation beam over the surface of a sample), a focusing optical configuration (e.g., configured to focus the excitation beam onto the sample), and at least one detector configured to detect light emitted by the sample due to an optical effect in response to the excitation beam. A second laser source facilitates a pulsed ablation beam for a local ablation of the material of the sample. The ablation beam can be guided to the sample via the scanning and focusing optical configurations. The first and second laser sources can be fed by a mutual continuous wave pump laser and/or a mutual pulsed pump laser. The first laser source can emit pulses with at least two different wavelengths.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: March 1, 2022
    Assignees: LEIBNIZ-INSTITUT FUR PHOTONISCHE TECHNOLOGIEN E.V., FRIEDRICH-SCHILLER-UNIVERSITAT JENA
    Inventors: Jürgen Popp, Michael Schmitt, Tobias Meyer-Zedler, Stefan Nolte, Roland Ackermann, Jens Limpert
  • Patent number: 11211762
    Abstract: The invention relates to an apparatus for generating laser pulses. It is an object of the invention to provide a method for generating synchronized laser pulse trains at variable wavelengths (e.g., for coherent Raman spectroscopy/microscopy), wherein the switching time for switching between different wavelengths should be in the sub-?s range. For this purpose the apparatus according to the invention comprises a pump laser (1), which emits pulsed laser radiation at a specified wavelength, an FDML laser (3), which emits continuous wave laser radiation at a cyclically variable wavelength, and a nonlinear conversion medium (4), in which the pulsed laser radiation of the pump laser (1) and the continuous wave laser radiation of the FDML laser (3) are superposed.
    Type: Grant
    Filed: July 12, 2018
    Date of Patent: December 28, 2021
    Assignees: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Friedrich-Schiller-Universität Jena, Leibniz-Institut Für Photonische Technologien E.V.
    Inventors: Thomas Gottschall, Jens Limpert, Andreas Tünnermann, Tobias Meyer, Jürgen Popp
  • Publication number: 20210300841
    Abstract: A process for the purification of isobutene from a C4 stream with at least 1-butene, 2-butene, isobutane and isobutene includes isomerizing 1-butene from a stream of material which is concentrated in isobutane and isobutene obtained from the C4 stream into 2-butene, using a catalyst in an isomerization reactor; supplying a product stream from the isomerization reactor to a rectification column; and providing a stream of material which is concentrated in isobutene. A processing facility is utilized for the purification of isobutene from the C4 stream.
    Type: Application
    Filed: August 2, 2019
    Publication date: September 30, 2021
    Inventors: Suman THOTLA, Pawel Tadeusz CZAJKA, Stefan Manfred ISELBORN, Kai-Uwe WEMHÖNER, Jürgen POPP
  • Publication number: 20210223183
    Abstract: An exemplary laser microscope can be provided, comprising at least one first laser source which emits at least one (e.g., pulsed) excitation beam, a scanning optical configuration (e.g., configured to scan the excitation beam over the surface of a sample), a focusing optical configuration (e.g., configured to focus the excitation beam onto the sample), and at least one detector configured to detect light emitted by the sample due to an optical effect in response to the excitation beam. A second laser source facilitates a pulsed ablation beam for a local ablation of the material of the sample. The ablation beam can be guided to the sample via the scanning and focusing optical configurations, The first and second laser sources can be fed by a mutual continuous wave pump laser- and/or a mutual pulsed pump laser. The first laser source can emit pulses with at least two different wavelengths.
    Type: Application
    Filed: May 19, 2017
    Publication date: July 22, 2021
    Inventors: Jürgen POPP, Micheal SCHMITT, Tobias MEYER, Stefan NOLTE, Roland ACKERMANN, Jens LIMPERT
  • Patent number: 10969332
    Abstract: Exemplary methods can be provided for the determination of a microbial pathogen. In addition, exemplary methods can be provided for the determination of a microbial pathogen and its anti-infective resistance. Further, an exemplary method can be provided for determining a bacterium and its antibiotic resistance. Systems and computer-accessible media can be provided for the determination of a microbial pathogen and its anti-infective resistance.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: April 6, 2021
    Assignees: LEIBNIZ-INSTITUT FÜR PHOTONISCHE TECHNOLOGIEN E.V., UNIVERSITÄTSKLINIKUM JENA
    Inventors: Ute Neugebauer, Jürgen Popp, Ondrej Stranik, Bettina Löffler
  • Publication number: 20210091527
    Abstract: The invention relates to an apparatus for generating laser pulses. It is an object of the invention to provide a method for generating synchronized laser pulse trains at variable wavelengths (e.g., for coherent Raman spectroscopy/microscopy), wherein the switching time for switching between different wavelengths should be in the sub-?s range. For this purpose the apparatus according to the invention comprises a pump laser (1), which emits pulsed laser radiation at a specified wavelength, an FDML laser (3), which emits continuous wave laser radiation at a cyclically variable wavelength, and a nonlinear conversion medium (4), in which the pulsed laser radiation of the pump laser (1) and the continuous wave laser radiation of the FDML laser (3) are superposed.
    Type: Application
    Filed: July 12, 2018
    Publication date: March 25, 2021
    Applicants: Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung E.V., Friedrich-Schiller-Universitat Jena, Leibniz-lnstitut Für Photonische Technologien E.V.
    Inventors: Thomas GOTTSCHALL, Jens LIMPERT, Andreas TÜNNERMANN, Tobias MEYER, Jürgen POPP
  • Publication number: 20210081633
    Abstract: Method for examining a multiplicity of distributed objects (1) by using an overview image (200) of the area (2) in which the objects (1) are distributed, wherein the overview image (200) is converted (110) into a binary image (210) by virtue of the intensity values (202) of the pixels (201) of the overview image (200) being classified (202a, 202b) as to whether they are on the near or far side of a prescribed threshold (208); the binary image (210) is cleared (120) of structures (219) that are smaller than the objects (1), so that a cleared image (220) is produced; and the cleared image (220) is morphologically closed (130), so that a binary object mask (230) is produced that indicates which locations in the area (2) belong to objects (1) and which locations in the area (2) do not belong to an object.
    Type: Application
    Filed: March 17, 2017
    Publication date: March 18, 2021
    Inventors: Iwan W. Schie, Christoph KRAFFT, Jürgen POPP
  • Publication number: 20200383577
    Abstract: Exemplary apparatus, device, system and method can be provided for examining a sample, which can comprising and/or utilize an imaging device for obtaining an overview image of the sample. A measuring instrument can also be used for locally interrogating at least one property of the sample with a laser beam which emerges from an aperture. Additionally, a tracking arrangement/system/device can be utilized for determining the location on the sample which is currently being interrogated with the laser beam. Additionally, memory or any other electronic storage device can be utilized, in which the property interrogated with the laser beam can be associated with the determined location on the sample.
    Type: Application
    Filed: December 12, 2018
    Publication date: December 10, 2020
    Inventors: IWAN W. SCHIE, WEI YANG, JÜRGEN POPP
  • Patent number: 10769782
    Abstract: Exemplary method, computer-accessible medium and system can be provided for determining the presence or absence of a local and/or global property of a biological tissue sample. Thus, it is possible to obtain at least one image of the sample, search the image(s) for a presence of at least one particular feature that is contained in a pre-defined set of features, and assign, to the particular feature(s). It is possible to compute, with a computer processor, at least one discriminant value that is a function of the pronunciation index that is weighted with a particular weight. The weight of each pronunciation index is a measure for a relevance of the corresponding feature with respect to the property. It is possible to determine whether the property is present in at least one part of the biological tissue sample depending on whether the discriminant value exceeds a pre-defined threshold and/or and optimized threshold.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: September 8, 2020
    Assignees: Leibniz-Institut für Photonische Technologien e.V., Friedrich-Schiller-Universität Jena
    Inventors: Jürgen Popp, Thomas Bocklitz, Olga Chernavskaia, Tobias Meyer
  • Patent number: 10605718
    Abstract: An arrangement for the individualized in-vitro patient blood analysis includes a holography module, a Raman spectroscopy module, a biomarker module and a flow controller which are connected in a data and information transmitting manner to a central control and computer unit, which has an information transmitting connection to a database, wherein the modules are fluidically connected to a common blood sample supply and supplies for fluid other than blood via the flow controller.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: March 31, 2020
    Assignees: Leibniz-Institut Photonische Technologien E.V., Universitaetsklinikum Jena
    Inventors: Thomas Henkel, Michael Bauer, Ute Neugebauer, Juergen Popp
  • Publication number: 20190162655
    Abstract: Exemplary methods can be provided for the determination of a microbial pathogen. In addition, exemplary methods can be provided for the determination of a microbial pathogen and its anti-infective resistance. Further, an exemplary method can be provided for determining a bacterium and its antibiotic resistance. Systems and computer-accessible media can be provided for the determination of a microbial pathogen and its anti-infective resistance.
    Type: Application
    Filed: July 26, 2017
    Publication date: May 30, 2019
    Inventors: Ute Neugebauer, Jürgen POPP, Ondrej STRANIK, Bettina LÖFFLER
  • Publication number: 20190049359
    Abstract: An arrangement for the individualized in-vitro patient blood analysis includes a holography module, a Raman spectroscopy module, a biomarker module and a flow controller which are connected in a data and information transmitting manner to a central control and computer unit, which has an information transmitting connection to a database, wherein the modules are fluidically connected to a common blood sample supply and supplies for fluid other than blood via the flow controller.
    Type: Application
    Filed: August 15, 2016
    Publication date: February 14, 2019
    Inventors: Thomas HENKEL, Michael BAUER, Ute NEUGEBAUER, Juergen POPP
  • Publication number: 20180365831
    Abstract: Exemplary method, computer-accessible medium and system can be provided for determining the presence or absence of a local and/or global property of a biological tissue sample. Thus, it is possible to obtain at least one image of the sample, search the image(s) for a presence of at least one particular feature that is contained in a pre-defined set of features, and assign, to the particular feature(s). It is possible to compute, with a computer processor, at least one discriminant value that is a function of the pronunciation index that is weighted with a particular weight. The weight of each pronunciation index is a measure for a relevance of the corresponding feature with respect to the property. It is possible to determine whether the property is present in at least one part of the biological tissue sample depending on whether the discriminant value exceeds a pre-defined threshold and/or and optimized threshold.
    Type: Application
    Filed: December 13, 2016
    Publication date: December 20, 2018
    Inventors: JÜRGEN POPP, THOMAS BOCKLITZ, OLGA CHERNAVSKAIA, TOBIAS MEYER
  • Publication number: 20130301044
    Abstract: The invention relates to a device (100) for identifying biotic particles in a medium to be analyzed, comprising a measuring cell (104), through which the medium to be analyzed can flow and in which the identification of the biotic particles is carried out by means of Raman spectroscopy, and a feed (102) by means of which the medium to be analyzed can be fed to the measuring cell (104). The device (100) according to the invention is characterized in that the feed (102) comprises at least one sensor (101) with which the presence of biotic particles in the medium flowing through the feed (102) can be ascertained. The feed (102) has a controllable bypass valve (103) downstream of the sensor (101), and the medium can be selectively fed to the measuring cell (104) or to a bypass channel (106) via said bypass valve.
    Type: Application
    Filed: December 2, 2011
    Publication date: November 14, 2013
    Applicant: EADS DEUTSCHLAND GMBH
    Inventors: Alois Friedberger, Jürgen Popp, Petra Rösch, Markus Lankers
  • Publication number: 20110165558
    Abstract: Individual viruses in any type of sample are identified quickly, unambiguously and reliably, and with the least possible preparation-related and technology-related expenditure, without necessitating immobilization using antibodies and without requiring an indication or at least a suspicion of potentially present viruses. This is accomplished by scanning the height profile of the sample, from which scanning sites suspected of containing viruses are selected, exposing those cites to monochromatic excitation light and spectroscopically analyzing the resulting Raman scattered light.
    Type: Application
    Filed: July 21, 2009
    Publication date: July 7, 2011
    Inventors: Jürgen Popp, Volker Deckert, Dieter Naumann, Robert Möller, Dana Cialla