Patents by Inventor Jürgen Wagner

Jürgen Wagner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11910931
    Abstract: It is a feature of a porous body (10, 20) comprising a three-dimensional network of node points (200) joined to one another by struts (100), and a void volume (300) present between the struts (100), that the struts (100) have an average length of ?200 to ?50 mm, the struts (100) have an average thickness of ?100 ?m to ?5 mm, and that the porous body has a compression hardness (40% compression, DIN EN ISO 3386-1: 2010-09) in at least one spatial direction of ?10 to ?100 kPa. The porous body according to the invention combines the advantages of a conventional mattress or cushion with ventilatability which results from its porous structure and is not achievable in conventional foams. The invention further relates to a method of producing such a porous body (10, 20) and to an apparatus comprising said body (10, 20) for supporting and/or bearing a person.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: February 27, 2024
    Assignee: Stratasys, Inc.
    Inventors: Dirk Achten, Thomas Büsgen, Dirk Dijkstra, Nicolas Degiorgio, Roland Wagner, Levent Akbas, Peter Reichert, Jürgen Hättig
  • Patent number: 11905167
    Abstract: A microfabricated structure includes a perforated stator; a first isolation layer on a first surface of the perforated stator; a second isolation layer on a second surface of the perforated stator; a first membrane on the first isolation layer; a second membrane on the second isolation layer; and a pillar coupled between the first membrane and the second membrane, wherein the first isolation layer includes a first tapered edge portion having a common surface with the first membrane, wherein the second isolation layer includes a first tapered edge portion having a common surface with the second membrane, and wherein an endpoint of the first tapered edge portion of the first isolation layer is laterally offset with respect to an endpoint of the first tapered edge portion of the second isolation layer.
    Type: Grant
    Filed: September 15, 2022
    Date of Patent: February 20, 2024
    Assignee: Infineon Technologies AG
    Inventors: Wolfgang Klein, Evangelos Angelopoulos, Stefan Barzen, Marc Fueldner, Stefan Geissler, Matthias Friedrich Herrmann, Ulrich Krumbein, Konstantin Tkachuk, Giordano Tosolini, Juergen Wagner
  • Patent number: 11626242
    Abstract: A winding assembly for a transformer, in particular with a medium operating voltage of Um?79.5 kV, wherein the winding assembly includes at least one winding, which ends in a winding conductor, where the winding conductor is connected to a switching line, which is configured to interconnect the winding to other windings, and where the connection of the switching line to the winding conductor is arranged inside the winding so as to reduce the danger of partial discharges and flashovers in the high-voltage end-line region for high-temperature applications.
    Type: Grant
    Filed: December 6, 2018
    Date of Patent: April 11, 2023
    Assignee: SIEMENS ENERGY GLOBAL GMBH & CO. KG
    Inventors: Jürgen Gangel, Hans Jürgen Wagner
  • Publication number: 20230002219
    Abstract: A microfabricated structure includes a perforated stator; a first isolation layer on a first surface of the perforated stator; a second isolation layer on a second surface of the perforated stator; a first membrane on the first isolation layer; a second membrane on the second isolation layer; and a pillar coupled between the first membrane and the second membrane, wherein the first isolation layer includes a first tapered edge portion having a common surface with the first membrane, wherein the second isolation layer includes a first tapered edge portion having a common surface with the second membrane, and wherein an endpoint of the first tapered edge portion of the first isolation layer is laterally offset with respect to an endpoint of the first tapered edge portion of the second isolation layer.
    Type: Application
    Filed: September 15, 2022
    Publication date: January 5, 2023
    Inventors: Wolfgang Klein, Evangelos Angelopoulos, Stefan Barzen, Marc Fueldner, Stefan Geissler, Matthias Friedrich Hermann, Ulrich Krumbien, Konstantin Tkachuk, Giordano Tosolini, Juergen Wagner
  • Patent number: 11524891
    Abstract: A microfabricated structure includes a perforated stator; a first isolation layer on a first surface of the perforated stator; a second isolation layer on a second surface of the perforated stator; a first membrane on the first isolation layer; a second membrane on the second isolation layer; and a pillar coupled between the first membrane and the second membrane, wherein the first isolation layer includes a first tapered edge portion having a common surface with the first membrane, wherein the second isolation layer includes a first tapered edge portion having a common surface with the second membrane, and wherein an endpoint of the first tapered edge portion of the first isolation layer is laterally offset with respect to an endpoint of the first tapered edge portion of the second isolation layer.
    Type: Grant
    Filed: January 18, 2021
    Date of Patent: December 13, 2022
    Assignee: Infineon Technologies AG
    Inventors: Wolfgang Klein, Evangelos Angelopoulos, Stefan Barzen, Marc Fueldner, Stefan Geissler, Matthias Friedrich Herrmann, Ulrich Krumbein, Konstantin Tkachuk, Giordano Tosolini, Juergen Wagner
  • Patent number: 11168799
    Abstract: A valve body (4) for a valve assembly (2) is proposed. The valve body (4) comprises a valve seat (96) which can be accessed by means of an opening (86). A plurality of threaded holes is provided around the opening (86). A plurality of first studs (22a-c) is arranged, in portions, in the threaded holes in order to arrange a valve drive. At least one second stud (24) comprises an electronic data carrier (26) for contactless identification of the valve seat (96). A portion of the second stud (24) is arranged in one of the threaded holes.
    Type: Grant
    Filed: June 7, 2018
    Date of Patent: November 9, 2021
    Assignee: GEMUE Gebr. Mueller Apparatebau GmbH & Co. Kommanditgesellschaft
    Inventors: Peter Stier, Juergen Wagner
  • Patent number: 11161735
    Abstract: A production method for a double-membrane MEMS component includes: providing a layer arrangement on a carrier substrate, wherein the layer arrangement comprises a first membrane structure, a sacrificial material layer adjoining the first membrane structure, and a counterelectrode structure in the sacrificial material layer and at a distance from the first membrane structure, wherein at least one through opening is formed in the sacrificial material layer as far as the first membrane structure; forming a filling material structure in the at least one through opening by applying a first filling material layer on the wall region of the at least one through opening; applying a second membrane structure on the layer arrangement with the sacrificial material; and removing the sacrificial material from an intermediate region to expose the filling material structure in the intermediate region.
    Type: Grant
    Filed: April 16, 2020
    Date of Patent: November 2, 2021
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Johann Strasser, Alfons Dehe, Gerhard Metzger-Brueckl, Juergen Wagner, Arnaud Walther
  • Patent number: 11017283
    Abstract: There is provided an electronic tag for a metal component of a system, wherein the electronic tag includes: a metal support frame, a first portion arranged within the metal support frame and secured relative to the metal support frame, a passive transponder, and a second portion, wherein the second portion secures the passive transponder at least relative to the first portion.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: May 25, 2021
    Assignee: GEMUE Gebr. Mueller Apparatebau GmbH & Co. Kommanditgesellschaft
    Inventors: Sebastian Nadig, Juergen Wagner
  • Publication number: 20210139319
    Abstract: A microfabricated structure includes a deflectable membrane, a first clamping layer on a first surface of the deflectable membrane, a second clamping layer on a second surface of the deflectable membrane, a first perforated backplate on the first clamping layer, and a second perforated backplate on the second clamping layer, wherein the first clamping layer comprises a first tapered edge portion having a negative slope between the first perforated backplate and the deflectable membrane.
    Type: Application
    Filed: January 18, 2021
    Publication date: May 13, 2021
    Inventors: Wolfgang Klein, Evangelos Angelopoulos, Stefan Barzen, Marc Fueldner, Stefan Geissler, Matthias Friedrich Herrmann, Ulrich Krumbein, Konstantin Tkachuk, Giordano Tosolini, Juergen Wagner
  • Patent number: 10981780
    Abstract: A microfabricated structure includes a deflectable membrane, a first clamping layer on a first surface of the deflectable membrane, a second clamping layer on a second surface of the deflectable membrane, a first perforated backplate on the first clamping layer, and a second perforated backplate on the second clamping layer, wherein the first clamping layer comprises a first tapered edge portion having a negative slope between the first perforated backplate and the deflectable membrane.
    Type: Grant
    Filed: August 19, 2019
    Date of Patent: April 20, 2021
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Wolfgang Klein, Evangelos Angelopoulos, Stefan Barzen, Marc Fueldner, Stefan Geissler, Matthias Friedrich Herrmann, Ulrich Krumbein, Konstantin Tkachuk, Giordano Tosolini, Juergen Wagner
  • Publication number: 20210053821
    Abstract: A microfabricated structure includes a deflectable membrane, a first clamping layer on a first surface of the deflectable membrane, a second clamping layer on a second surface of the deflectable membrane, a first perforated backplate on the first clamping layer, and a second perforated backplate on the second clamping layer, wherein the first clamping layer comprises a first tapered edge portion having a negative slope between the first perforated backplate and the deflectable membrane.
    Type: Application
    Filed: August 19, 2019
    Publication date: February 25, 2021
    Inventors: Wolfgang Klein, Evangelos Angelopoulos, Stefan Barzen, Marc Fueldner, Stefan Geissler, Matthias Friedrich Herrmann, Ulrich Krumbein, Konstantin Tkachuk, Giordano Tosolini, Juergen Wagner
  • Publication number: 20200350112
    Abstract: A winding assembly for a transformer, in particular with a medium operating voltage of Um?79.5 kV, wherein the winding assembly includes at least one winding, which ends in a winding conductor, where the winding conductor is connected to a switching line, which is configured to interconnect the winding to other windings, and where the connection of the switching line to the winding conductor is arranged inside the winding so as to reduce the danger of partial discharges and flashovers in the high-voltage end-line region for high-temperature applications.
    Type: Application
    Filed: December 6, 2018
    Publication date: November 5, 2020
    Inventors: Jürgen Gangel, Hans Jürgen WAGNER
  • Publication number: 20200239302
    Abstract: A production method for a double-membrane MEMS component includes: providing a layer arrangement on a carrier substrate, wherein the layer arrangement comprises a first membrane structure, a sacrificial material layer adjoining the first membrane structure, and a counterelectrode structure in the sacrificial material layer and at a distance from the first membrane structure, wherein at least one through opening is formed in the sacrificial material layer as far as the first membrane structure; forming a filling material structure in the at least one through opening by applying a first filling material layer on the wall region of the at least one through opening; applying a second membrane structure on the layer arrangement with the sacrificial material; and removing the sacrificial material from an intermediate region to expose the filling material structure in the intermediate region.
    Type: Application
    Filed: April 16, 2020
    Publication date: July 30, 2020
    Inventors: Johann Strasser, Alfons Dehe, Gerhard Metzger-Brueckl, Juergen Wagner, Arnaud Walther
  • Patent number: 10669151
    Abstract: A production method for a double-membrane MEMS component includes: providing a layer arrangement on a carrier substrate, wherein the layer arrangement comprises a first membrane structure, a sacrificial material layer adjoining the first membrane structure, and a counterelectrode structure in the sacrificial material layer and at a distance from the first membrane structure, wherein at least one through opening is formed in the sacrificial material layer as far as the first membrane structure; forming a filling material structure in the at least one through opening by applying a first filling material layer on the wall region of the at least one through opening; applying a second membrane structure on the layer arrangement with the sacrificial material; and removing the sacrificial material from an intermediate region to expose the filling material structure in the intermediate region.
    Type: Grant
    Filed: August 30, 2018
    Date of Patent: June 2, 2020
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Johann Strasser, Alfons Dehe, Gerhard Metzger-Brueckl, Juergen Wagner, Arnaud Walther
  • Patent number: 10589990
    Abstract: In accordance with an embodiment, a MEMS microphone includes a sound detection unit having a first membrane, a second membrane arranged at a distance from the first membrane, a low-pressure region arranged between the first membrane and the second membrane, a gas pressure that is reduced in relation to normal pressure being present in said low-pressure region, a counter electrode arranged in the low-pressure region, and a sound through-hole, which extends through the sound detection unit in a thickness direction of the sound detection unit; and a valve provided at the sound through-hole, said valve being configured to adopt a plurality of valve states, wherein a predetermined degree of transmission of the sound through-hole to sound is assigned to each valve state.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: March 17, 2020
    Assignee: INFINEON TECHNOLOGIES AG
    Inventors: Alfons Dehe, Ulrich Krumbein, Gerhard Metzger-Brueckl, Johann Strasser, Juergen Wagner, Arnaud Walther
  • Publication number: 20190377993
    Abstract: There is provided an electronic tag for a metal component of a system, wherein the electronic tag includes: a metal support frame, a first portion arranged within the metal support frame and secured relative to the metal support frame, a passive transponder, and a second portion, wherein the second portion secures the passive transponder at least relative to the first portion.
    Type: Application
    Filed: June 3, 2019
    Publication date: December 12, 2019
    Applicant: GEMUE Gebr. Mueller Apparatebau GmbH & Co. Kommanditgesellschaft
    Inventors: Sebastian Nadig, Juergen Wagner
  • Publication number: 20190084827
    Abstract: In accordance with an embodiment, a MEMS microphone includes a sound detection unit having a first membrane, a second membrane arranged at a distance from the first membrane, a low-pressure region arranged between the first membrane and the second membrane, a gas pressure that is reduced in relation to normal pressure being present in said low-pressure region, a counter electrode arranged in the low-pressure region, and a sound through-hole, which extends through the sound detection unit in a thickness direction of the sound detection unit; and a valve provided at the sound through-hole, said valve being configured to adopt a plurality of valve states, wherein a predetermined degree of transmission of the sound through-hole to sound is assigned to each valve state
    Type: Application
    Filed: September 18, 2018
    Publication date: March 21, 2019
    Inventors: Alfons Dehe, Ulrich Krumbein, Gerhard Metzger-Brueckl, Johann Strasser, Juergen Wagner, Arnaud Walther
  • Publication number: 20190071305
    Abstract: A production method for a double-membrane MEMS component includes: providing a layer arrangement on a carrier substrate, wherein the layer arrangement comprises a first membrane structure, a sacrificial material layer adjoining the first membrane structure, and a counterelectrode structure in the sacrificial material layer and at a distance from the first membrane structure, wherein at least one through opening is formed in the sacrificial material layer as far as the first membrane structure; forming a filling material structure in the at least one through opening by applying a first filling material layer on the wall region of the at least one through opening; applying a second membrane structure on the layer arrangement with the sacrificial material; and removing the sacrificial material from an intermediate region to expose the filling material structure in the intermediate region.
    Type: Application
    Filed: August 30, 2018
    Publication date: March 7, 2019
    Inventors: Johann Strasser, Alfons Dehe, Gerhard Metzger-Brueckl, Juergen Wagner, Arnaud Walther
  • Publication number: 20180356843
    Abstract: A valve body (4) for a valve assembly (2) is proposed. The valve body (4) comprises a valve seat (96) which can be accessed by means of an opening (86). A plurality of threaded holes is provided around the opening (86). A plurality of first studs (22a-c) is arranged, in portions, in the threaded holes in order to arrange a valve drive. At least one second stud (24) comprises an electronic data carrier (26) for contactless identification of the valve seat (96). A portion of the second stud (24) is arranged in one of the threaded holes.
    Type: Application
    Filed: June 7, 2018
    Publication date: December 13, 2018
    Applicant: GEMUE Gebr. Mueller Apparatebau GmbH & Co. Kommanditgesellschaft
    Inventors: Peter Stier, Juergen Wagner
  • Patent number: D920388
    Type: Grant
    Filed: October 30, 2019
    Date of Patent: May 25, 2021
    Assignee: SPOHN & BURKHARDT GMBH & CO. KG
    Inventors: Jürgen Wagner, Gerhard Oesterle, Philipp Kessler, Thomas Starczewski