Patents by Inventor J Stark

J Stark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10474465
    Abstract: A pipelined run-to-completion processor executes a pop stack absolute instruction. The instruction includes an opcode, an absolute pointer value, a flag don't touch bit, and predicate bits. If a condition indicated by the predicate bits is not true, then the opcode operation is not performed. If the condition is true, then the stack of the processor is popped thereby generating an operand A. The absolute pointer value is used to identify a particular register of the stack, and the content of that particular register is an operand B. The arithmetic logic operation specified by the opcode is performed using operand A and operand B thereby generating a result, and the content of the particular register is replaced with the result. If the flag don't touch bit is set to a particular value, then the flag bits (carry flag and zero flag) are not affected by the instruction execution.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: November 12, 2019
    Assignee: Netronome Systems, Inc.
    Inventor: Gavin J. Stark
  • Patent number: 10474816
    Abstract: A system, a method, and a computer program product for secure memory implementation for secure execution of virtual machines. Data is processed in a first mode and a second mode, and commands are sent to a chip interconnect bus using real addresses, wherein the chip interconnect bus transports a number of bits for the real addresses. A memory controller is operatively coupled to a memory component. A secure memory range is specified by using range registers. If the real address is detected to be in the secure memory range to match a memory component address, a real address bit is set. If the real address is in the memory address hole, a security access violation is detected. If the real address is not in the secure address range and the real address bit is set, the security access violation is detected.
    Type: Grant
    Filed: December 14, 2017
    Date of Patent: November 12, 2019
    Assignee: International Business Machines Corporation
    Inventors: William E. Hall, Guerney D. H. Hunt, Ronald N. Kalla, Jentje Leenstra, Paul Mackerras, William J. Starke, Jeffrey A. Stuecheli
  • Publication number: 20190339124
    Abstract: An optical detection system for analyzing a fluid sample including a light source configured to emit a light beam to interact with the sample to form a spectrum, an optical fiber to transmit the spectrum, an array of single-photon detectors (SPDs), and wherein each SPD is configured to receive and is tunable to analyze spectral characteristics of the spectrum across a spectral range.
    Type: Application
    Filed: August 26, 2016
    Publication date: November 7, 2019
    Applicant: HALLIBURTON ENERGY SERVICES, INC.
    Inventors: Daniel J. Stark, John L. Maida
  • Patent number: 10437725
    Abstract: A technique for operating a data processing system includes transitioning, by a cache, to a highest point of coherency (HPC) for a cache line in a required state without receiving data for one or more segments of the cache line that are needed. The cache issues a command to a lowest point of coherency (LPC) that requests data for the one or more segments of the cache line that were not received and are needed. The cache receives the data for the one or more segments of the cache line from the LPC that were not previously received and were needed.
    Type: Grant
    Filed: August 2, 2017
    Date of Patent: October 8, 2019
    Assignee: International Business Machines Corporation
    Inventors: Guy L. Guthrie, Michael S. Siegel, William J. Starke, Jeffrey A. Stuecheli
  • Patent number: 10423550
    Abstract: A processing unit connected via a system fabric to multiple processing units calls a first single command in a bus protocol that allows sampling over the system fabric of the capability of snoopers distributed across the processing units to handle an interrupt. The processing unit, in response to detecting at least one first selection of snoopers with capability to handle the interrupt, calling a second single command in the bus protocol to poll the first selection of snoopers over the system fabric for an availability status. The processing unit, in response to detecting at least one second selection of snoopers respond with the available status indicating an availability to handle the interrupt, assigning a single snooper from among the second selection of snoopers to handle the interrupt by calling a third single command in the bus protocol.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: September 24, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Richard L. Arndt, Florian Auernhammer, Wayne M. Barrett, Robert A. Drehmel, Guy L. Guthrie, Michael S. Siegel, William J. Starke
  • Patent number: 10394711
    Abstract: Managing lowest point of coherency (LPC) memory using a service layer adapter, the adapter coupled to a processor and an accelerator on a host computing system, the processor configured for symmetric multi-processing, including receiving, by the adapter, a memory access instruction from the accelerator; retrieving, by the adapter, a real address for the memory access instruction; determining, using base address registers on the adapter, that the real address targets the LPC memory, wherein the base address registers direct memory access requests between the LPC memory and other memory locations on the host computing system; and sending, by the adapter, the memory access instruction and the real address to a media controller for the LPC memory, wherein the media controller for the LPC memory is attached to the adapter via a memory interface.
    Type: Grant
    Filed: November 30, 2016
    Date of Patent: August 27, 2019
    Assignee: International Business Machines Corporation
    Inventors: Etai Adar, Lakshminarayana B. Arimilli, Yiftach Benjamini, Bartholomew Blaner, William J. Starke, Jeffrey A. Stuecheli
  • Patent number: 10392317
    Abstract: The present disclosure provides methods to produce para-xylene, toluene, and other compounds from renewable sources (e.g., cellulose, hemicellulose, starch, sugar) and ethylene in the presence of a catalyst. For example, cellulose and/or hemicellulose may be converted into 2,5-dimethylfuran (DMF), which may be converted into para-xylene by cycloaddition of ethylene to DMF. Para-xylene can then be oxidized to form terephthalic acid.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: August 27, 2019
    Assignee: MICROMIDAS, INC.
    Inventors: Makoto N. Masuno, Ryan L. Smith, John Bissell, II, Patrick B. Smith, Dennis A. Hucul, Edmund J. Stark, Daniel R. Henton, Adina Dumitrascu, Katherine Brune, Dimitri A. Hirsch-Weil
  • Patent number: 10376414
    Abstract: Systems, apparatuses, and methods include a surgical apparatus with a handle for grasping by a user and a multi-function surgical portion extending therefrom. The multi-function surgical portion may include an illuminator portion arranged to provide illumination to a surgical region of a patient during a surgical procedure, and tissue-treating portion coaxially aligned with the illuminator portion.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: August 13, 2019
    Assignee: Novartis AG
    Inventors: Paul R. Hallen, Walter J. Stark, III
  • Patent number: 10366019
    Abstract: A multiprocessor system includes several processors, a Shared Local Memory (SLMEM) that stores instructions and data, a system interface block, a posted transaction interface block, and an atomics block. Each processor is coupled to the system interface block via its AHB-S bus. The posted transaction interface block and the atomics block are shared resources that a processor can use via the same system interface block. A processor causes the atomics block to perform an atomic metering operation by doing an AHB-S write to a particular address in shared address space. The system interface block translates information from the AHB-S write into an atomics command, which in turn is converted into pipeline opcodes that cause a pipeline within the atomics block to perform the operation. An atomics response communicates result information which is stored into the system interface block. The processor reads the result information by reading from the same address.
    Type: Grant
    Filed: September 4, 2016
    Date of Patent: July 30, 2019
    Assignee: Netronome Systems, Inc.
    Inventor: Gavin J. Stark
  • Patent number: 10365681
    Abstract: A multiprocessor system includes several processors, a prefetching instruction code interface block, a prefetching data code interface block, a Shared Local Memory (SLMEM), and Clock Gapping Circuits (CGCs). Each processor has the same address map. Each fetches instructions from SLMEM via the instruction interface block. Each accesses data from/to SLMEM via the data interface block. The interface blocks and the SLMEM are clocked at a faster rate than the processors. The interface blocks have wide prefetch lines of the width of the SLMEM. The data interface block supports no-wait single-byte data writes from the processors, and also supports no-wait multi-byte data writes. An address translator prevents one processor from overwriting the stack of another. If a requested instruction or data is not available in the appropriate prefetching circuit, then the clock signal of the requesting processor is gapped until the instruction or data can be returned to the requesting processor.
    Type: Grant
    Filed: September 4, 2016
    Date of Patent: July 30, 2019
    Assignee: Netronome Systems, Inc.
    Inventor: Gavin J. Stark
  • Patent number: 10362093
    Abstract: Multiple processors share access, via a bus, to a pipelined NFA engine. The NFA engine can implement an NFA of the type that is not a DFA (namely, it can be in multiple states at the same time). One of the processors communicates a configuration command, a go command, and an event generate command across the bus to the NFA engine. The event generate command includes a reference value. The configuration command causes the NFA engine to be configured. The go command causes the configured NFA engine to perform a particular NFA operation. Upon completion of the NFA operation, the event generate command causes the reference value to be returned back across the bus to the processor.
    Type: Grant
    Filed: January 9, 2014
    Date of Patent: July 23, 2019
    Assignee: Netronome Systems, Inc.
    Inventors: Gavin J. Stark, Steven W. Zagorianakos
  • Patent number: 10346164
    Abstract: A processor core of a data processing system, in response to a first instruction, generates a copy-type request specifying a source real address and transmits it to a lower level cache. In response to a second instruction, the processor core generates a paste-type request specifying a destination real address associated with a memory-mapped device and transmits it to the lower level cache. In response to the copy-type request, the lower level cache copies a data granule from a storage location specified by the source real address into a non-architected buffer. In response to the paste-type request, the lower level cache writes the data granule from the non-architected buffer to the memory-mapped device. In response to receipt of the data granule, the memory-mapped device stores the data granule in a queue in the system memory associated with a hardware device of the data processing system.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: July 9, 2019
    Assignee: International Business Machines Corporation
    Inventors: Lakshminarayana B. Arimilli, Bartholomew Blaner, William J. Starke, Randal C. Swanberg, Scott M. Willenborg
  • Patent number: 10331373
    Abstract: A data processing system includes at least one processor core each having an associated store-through upper level cache and an associated store-in lower level cache. In response to execution of a memory move instruction sequence including a plurality of copy-type instructions and a plurality of paste-type instructions, the at least one processor core transmits a corresponding plurality of copy-type and paste-type requests to its associated lower level cache, where each copy-type request specifies a source real address and each paste-type request specifies a destination real address. In response to receipt of each copy-type request, the associated lower level cache copies a respective data granule from a respective storage location specified by the source real address of that copy-type request into a non-architected buffer.
    Type: Grant
    Filed: August 22, 2016
    Date of Patent: June 25, 2019
    Assignee: International Business Machines Corporation
    Inventors: Guy L. Guthrie, William J. Starke, Derek E. Williams
  • Patent number: 10296741
    Abstract: An embodiment involves secure memory implementation for secure execution of virtual machines. Data is processed in a first mode and a second mode, and commands are sent to a chip interconnect bus using real addresses, wherein the chip interconnect bus includes a number of bits for the real addresses. A memory controller is operatively coupled to a memory component. A secure memory range is specified by using range registers. If the real address is detected to be in the secure memory range to match a memory component address, a real address bit is set. If the real address is in the memory address hole, a security access violation is detected. If the real address is not in the secure address range and the real address bit is set, the security access violation is detected.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: May 21, 2019
    Assignee: International Business Machines Corporation
    Inventors: William E. Hall, Guerney D. H. Hunt, Ronald N. Kalla, Jentje Leenstra, Paul Mackerras, William J. Starke, Jeffrey A. Stuecheli
  • Patent number: 10235215
    Abstract: A memory lock mechanism within a multi-processor system is disclosed. A lock control section is initially assigned to a data block within a system memory of the multiprocessor system. In response to a request for accessing the data block by a processing unit within the multiprocessor system, a determination is made by a memory controller whether or not the lock control section of the data block has been set. If the lock control section of the data block has been set, the request for accessing the data block is denied. Otherwise, if the lock control section of the data block has not been set, the lock control section of the data block is set, and the request for accessing the data block is allowed.
    Type: Grant
    Filed: February 1, 2008
    Date of Patent: March 19, 2019
    Assignee: International Business Machines Corporation
    Inventors: Lakshminarayana B. Arimilli, Ravi K. Arimilli, Guy L. Guthrie, William J. Starke
  • Patent number: 10228968
    Abstract: A Network Interface Device (NID) of a web hosting server implements multiple virtual NIDs. For each virtual NID there is a block in a memory of a transactional memory on the NID. This block stores configuration information that configures the corresponding virtual NID. The NID also has a single managing processor that monitors configuration of the plurality of virtual NIDs. If there is a write into the memory space where the configuration information for the virtual NIDs is stored, then the transactional memory detects this write and in response sends an alert to the managing processor. The size and location of the memory space in the memory for which write alerts are to be generated is programmable. The content and destination of the alert is also programmable.
    Type: Grant
    Filed: August 29, 2017
    Date of Patent: March 12, 2019
    Assignee: Netronome Systems, Inc.
    Inventors: Gavin J. Stark, Rolf Neugebauer
  • Patent number: 10230638
    Abstract: An integrated circuit includes a processor and an exact-match flow table structure. A first packet is received onto the integrated circuit. The packet is determined to be of a first type. As a result of this determination, execution by the processor of a first sequence of instructions is initiated. This execution causes bits of the first packet to be concatenated and modified in a first way, thereby generating a first Flow Id. The first Flow Id is an exact-match for the Flow Id of a first stored flow entry. A second packet is received. It is of a first type. As a result, a second sequence of instructions is executed. This causes bits of the second packet to be concatenated and modified in a second way, thereby generating a second Flow Id. The second Flow Id is an exact-match for the Flow Id of a second stored flow entry.
    Type: Grant
    Filed: July 23, 2018
    Date of Patent: March 12, 2019
    Assignee: Netronome Systems, Inc.
    Inventors: Gavin J. Stark, Stuart C. Wray
  • Patent number: 10216653
    Abstract: A serial communication system includes a transmitting circuit for serially transmitting data via a serial communication link including N channels where N is an integer greater than 1. The transmitting circuit includes an input buffer having storage for input data frames each including M bytes forming N segments of M/N contiguous bytes. The transmitting circuit additionally includes a reordering circuit coupled to the input buffer. The reordering circuit includes a reorder buffer including multiple entries. The reordering circuit buffers, in each of multiple entries of the reorder buffer, a byte in a common byte position in each of the N segments of an input data frame. The reordering circuit sequentially outputs the contents of the entries of the reorder buffer via the N channels of the serial communication link.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: February 26, 2019
    Assignee: International Busiess Machines Corporation
    Inventors: Lakshminarayana Baba Arimilli, Yiftach Benjamini, Bartholomew Blaner, Daniel M. Dreps, John David Irish, David J. Krolak, Lonny Lambrecht, Michael S. Siegel, William J. Starke, Jeffrey A. Stuecheli, Kenneth M. Valk, Curtis C. Wollbrink
  • Patent number: 10195212
    Abstract: Particles encapsulating a glucocorticoid such as dexamethasone sodium phosphate (DSP) into a matrix such as biodegradable poly(lactic-coglycolic acid) (PLGA) which is densely coated with hydrophilic polymer such as PEG or PLURONIC® F127, exhibit sustained release of DSP for up to 7 days in vitro. These nanoparticles can be used to prevent corneal graft rejection or corneal neovascularization.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: February 5, 2019
    Assignee: The Johns Hopkins University
    Inventors: Justin Scot Hanes, Qing Pan, Qingguo Xu, Nicholas J. Boylan, Walter J. Stark, Bing Wang, Lixia Luo
  • Publication number: 20190034628
    Abstract: Secure memory implementation for secure execution of virtual machines. Data is processed in a first mode and a second mode, and commands are sent to a chip interconnect bus using real addresses, wherein the chip interconnect bus includes a number of bits for the real addresses. A memory controller is operatively coupled to a memory component. A secure memory range is specified by using range registers. If the real address is detected to be in the secure memory range to match a memory component address, a real address bit is inverted. If the real address is in the secure memory address hole, a security access violation is detected. If the real address is not in the secure address range and the real address bit is set, the security access violation is detected.
    Type: Application
    Filed: December 14, 2017
    Publication date: January 31, 2019
    Inventors: William E. Hall, Guerney D. H. Hunt, Ronald N. Kalla, Jentje Leenstra, Paul Mackerras, William J. Starke, Jeffrey A. Stuecheli