Patents by Inventor J. Wallace Parce

J. Wallace Parce has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8440369
    Abstract: The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: May 14, 2013
    Assignee: Nanosys, Inc.
    Inventors: Chunming Niu, Calvin Y. H. Chow, Stephen A. Empedocles, J. Wallace Parce
  • Patent number: 8425803
    Abstract: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided.
    Type: Grant
    Filed: November 9, 2009
    Date of Patent: April 23, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: J. Wallace Parce, Paul Bernatis, Robert Dubrow, William P. Freeman, Joel Gamoras, Shihai Kan, Andreas Meisel, Baixin Qian, Jeffery A. Whiteford, Jonathan Ziebarth
  • Patent number: 8357475
    Abstract: The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: January 22, 2013
    Assignee: Nanosys, Inc.
    Inventors: Chunming Niu, Calvin Y. H. Chow, Stephen A. Empedocles, J. Wallace Parce
  • Publication number: 20120282540
    Abstract: The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
    Type: Application
    Filed: July 17, 2012
    Publication date: November 8, 2012
    Applicant: NANOSYS, INC.
    Inventors: Chunming Niu, Calvin Y.H. Chow, Stephen A. Empedocles, J. Wallace Parce
  • Patent number: 8304595
    Abstract: Methods, systems, and apparatuses for nanomaterial-enhanced hemostatic medical devices are provided. Hemostatic materials and structures are provided that induce coagulation of blood at a wound/opening caused by trauma, a surgical procedure, ulceration, or other cause. The hemostatic materials and structures may incorporate nanostructures and/or further hemostatic elements such as polymers and/or glass beads. The hemostatic materials and structures may be resorbable. Example embodiments include hemostatic bandages, hemostatic plugs, and hemostatic formulations.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: November 6, 2012
    Assignee: Nanosys, Inc.
    Inventors: R. Hugh Daniels, Robert S. Dubrow, Robert Enzerink, Esther Li, Vijendra Sahi, Jay L. Goldman, J. Wallace Parce
  • Publication number: 20120273353
    Abstract: The present invention provides novel methods for performing pulsed field mobility shift assays in microfluidic devices. In particular, the methods of the invention utilize differences between electrophoretic mobilities (e.g., as between reactants and products, especially in non-fluorogenic reactions) in order to separate the species and thus analyze the reaction.
    Type: Application
    Filed: July 9, 2012
    Publication date: November 1, 2012
    Applicant: Caliper Life Sciences, Inc.
    Inventors: Andrea W. Chow, John C. Owicki, J. Wallace Parce
  • Patent number: 8283412
    Abstract: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes are optionally formed from the ligands. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided.
    Type: Grant
    Filed: April 29, 2010
    Date of Patent: October 9, 2012
    Assignee: Nanosys, Inc.
    Inventors: Mingjun Liu, Robert Dubrow, William P. Freeman, Adrienne Kucma, J. Wallace Parce
  • Patent number: 8252164
    Abstract: The present invention provides methods and systems for nanowire alignment and deposition. Energizing (e.g., an alternating current electric field) is used to align and associate nanowires with electrodes. By modulating the energizing, the nanowires are coupled to the electrodes such that they remain in place during subsequent wash and drying steps. The invention also provides methods for transferring nanowires from one substrate to another in order to prepare various device substrates. The present invention also provides methods for monitoring and controlling the number of nanowires deposited at a particular electrode pair, as well as methods for manipulating nanowires in solution.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: August 28, 2012
    Assignees: Nanosys, Inc., Sharp Kabushiki Kaisha
    Inventors: Samuel Martin, Xiangfeng Duan, Katsumasa Fujii, James M. Hamilton, Hiroshi Iwata, Francisco Leon, Jeffrey Miller, Tetsu Negishi, Hiroshi Ohki, J. Wallace Parce, Cheri X. Y. Pereira, Paul John Schuele, Akihide Shibata, David P. Stumbo, Yasunobu Okada
  • Publication number: 20120204964
    Abstract: The invention provides methods of controlling environmental conditions within a fluidic system, where such environmental conditions can affect the operation of the system in its desired function, and fluidic channels, devices, and systems that are used in practicing these methods. Such methods are generally directed to environmental control fluids, the movement of such fluids through these systems, and the interaction of these fluids with other components of the system, e.g., other fluids or solid components of the system.
    Type: Application
    Filed: April 23, 2012
    Publication date: August 16, 2012
    Applicant: Caliper Life Sciences, Inc.
    Inventors: J. Wallace Parce, Yung-mae M. Yao, Donald J. Morrissey, JR.
  • Patent number: 8241883
    Abstract: The present invention provides novel microfluidic devices and methods for performing pulsed field mobility shift assays in microfluidic devices. In particular the devices and methods of the invention utilize differences between electrophoretic mobilities (e.g., as between reactants and products, especially in non-fluorogenic reactions) in order to separate the species and thus analyze the reaction.
    Type: Grant
    Filed: April 25, 2006
    Date of Patent: August 14, 2012
    Assignee: Caliper Life Sciences, Inc.
    Inventors: Andrea W. Chow, John C. Owicki, J. Wallace Parce
  • Patent number: 8143703
    Abstract: Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices).
    Type: Grant
    Filed: November 5, 2008
    Date of Patent: March 27, 2012
    Assignee: Nanosys, Inc.
    Inventors: David L. Heald, Karen Chu Cruden, Xiangfeng Duan, Chao Liu, J. Wallace Parce
  • Publication number: 20120068118
    Abstract: Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided.
    Type: Application
    Filed: October 20, 2011
    Publication date: March 22, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: J. Wallace Parce, Paul Bernatis, Robert Dubrow, William P. Freeman, Joel Gamoras, Shihai Kan, Andreas Meisel, Baixin Qian, Jeffery A. Whiteford, Jonathan Ziebarth
  • Publication number: 20120031486
    Abstract: The present invention relates to nanoparticle compositions for use in photovoltaic cells. Nanoparticles are utilized to provide increased scattering and also wavelength shifting to increase the efficiency of the photovoltaic cells. Exemplary nanoparticles include colloidal metal and fluorescent nanoparticles.
    Type: Application
    Filed: April 14, 2010
    Publication date: February 9, 2012
    Applicant: NANOSYS, INC.
    Inventors: J. Wallace Parce, Jian Chen
  • Patent number: 8088483
    Abstract: Methods for producing Group 10 metal nanostructures are provided. The methods involve novel precursors, novel surfactants, or novel precursor-surfactant combinations. Compositions related to the methods are also featured.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: January 3, 2012
    Assignee: Nanosys, Inc.
    Inventors: Jeffery A. Whiteford, Mihai A. Buretea, William P. Freeman, J. Wallace Parce, Baixin Qian, Erik C. Scher
  • Publication number: 20110284380
    Abstract: The present invention provides methods and systems for nanowire alignment and deposition. Energizing (e.g., an alternating current electric field) is used to align and associate nanowires with electrodes. By modulating the energizing, the nanowires are coupled to the electrodes such that they remain in place during subsequent wash and drying steps. The invention also provides methods for transferring nanowires from one substrate to another in order to prepare various device substrates. The present invention also provides methods for monitoring and controlling the number of nanowires deposited at a particular electrode pair, as well as methods for manipulating nanowires in solution.
    Type: Application
    Filed: May 23, 2011
    Publication date: November 24, 2011
    Inventors: Samuel MARTIN, Xiangfeng Duan, Katsumasa Fujii, James M. Hamilton, Hiroshi Iwata, Francisco Leon, Jeffrey Miller, Tetsu Negishi, Hiroshi Ohki, J. Wallace Parce, Cheri X.Y. Pereira, Paul John Schuele, Akihide Shibata, David P. Stumbo, Yasunobu Okada
  • Publication number: 20110251295
    Abstract: Methods for producing electronic grade metal nanostructures having low levels of contaminants are provided. Monolayer arrays, populations, and devices including such electronic grade nanostructures are described. In addition, novel methods and compositions for production of Group 10 metal nanostructures and for production of ruthenium nanostructures are provided, along with methods for recovering nanostructures from suspension.
    Type: Application
    Filed: May 27, 2011
    Publication date: October 13, 2011
    Applicant: NANOSYS, INC.
    Inventors: Srikanth Ranganathan, Paul Bernatis, Joel Gamoras, Chao Liu, J. Wallace Parce
  • Patent number: 8030161
    Abstract: A nonvolatile memory cell includes a substrate comprising a source, drain, and channel between the source and the drain. A tunnel dielectric layer overlies the channel, and a localized charge storage layer is disposed between the tunnel dielectric layer and a control dielectric layer. A gate electrode has a first surface adjacent to the control dielectric layer, and the first surface includes a midsection and two edge portions. According to one embodiment, the midsection defines a plane, and at least one edge portion extends away from the plane. Preferably, the edge portion extending away from the plane converges toward an opposing second surface of the gate electrode. According to another embodiment, the gate electrode of the nonvolatile memory cell includes a first sublayer and a second sublayer of a different width on the first sublayer.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: October 4, 2011
    Assignee: Nanosys, Inc.
    Inventors: Xiangfeng Duan, Jian Chen, J. Wallace Parce, Francisco A. Leon
  • Publication number: 20110229795
    Abstract: The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
    Type: Application
    Filed: May 31, 2011
    Publication date: September 22, 2011
    Applicant: NANOSYS, INC.
    Inventors: Chunming Niu, Calvin Y.H. Chow, Stephen A. Empedocles, J. Wallace Parce
  • Publication number: 20110204432
    Abstract: Methods for forming or patterning nanostructure arrays are provided. The methods involve formation of arrays on coatings comprising nanostructure association groups, formation of arrays in spin-on-dielectrics, solvent annealing after nanostructure deposition, patterning using resist, and/or use of devices that facilitate array formation. Related devices for forming nanostructure arrays are also provided, as are devices including nanostructure arrays (e.g., memory devices). Methods for protecting nanostructures from fusion during high temperature processing are also provided.
    Type: Application
    Filed: April 29, 2011
    Publication date: August 25, 2011
    Applicant: NANOSYS, INC.
    Inventors: Jian Chen, Xiangfeng Duan, Chao Liu, Madhuri L. Nallabolu, J. Wallace Parce, Srikanth Ranganathan
  • Patent number: 7977013
    Abstract: The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: July 12, 2011
    Assignee: Nanosys, Inc.
    Inventors: Chunming Niu, Calvin Y. H. Chow, Stephen A. Empedocles, J. Wallace Parce