Patents by Inventor J. Xu

J. Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9425286
    Abstract: Various source/drain stressors that can enhance carrier mobility, and methods for manufacturing the same, are disclosed. An exemplary source/drain stressor includes a seed layer of a first material disposed over a substrate of a second material, the first material being different than the second material; a relaxed epitaxial layer disposed over the seed layer; and an epitaxial layer disposed over the relaxed epitaxial layer.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: August 23, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chin-Hsiang Lin, Jeff J. Xu, Pang-Yen Tsai
  • Patent number: 9356109
    Abstract: A transistor includes a gate dielectric structure over a substrate and a work function metallic layer over the gate dielectric structure. The work function metallic layer is configured to adjust a work function value of a gate electrode of the transistor. The transistor also includes a silicide structure over the work function metallic layer. The silicide structure is configured to be independent of the work function value of the gate electrode of the transistor.
    Type: Grant
    Filed: October 22, 2014
    Date of Patent: May 31, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Jeff J. Xu
  • Publication number: 20160104706
    Abstract: A FinFET device and method for fabricating a FinFET device is disclosed. An exemplary method includes providing a semiconductor substrate; forming a first fin structure and a second fin structure over the semiconductor substrate; forming a gate structure over a portion of the first and second fin structures, such that the gate structure traverses the first and second fin structures; epitaxially growing a first semiconductor material on exposed portions of the first and second fin structures, such that the exposed portions of the first and second fin structures are merged together; and epitaxially growing a second semiconductor material over the first semiconductor material.
    Type: Application
    Filed: October 16, 2015
    Publication date: April 14, 2016
    Inventors: Jeff J. Xu, Chih-Hao Chang
  • Publication number: 20160079425
    Abstract: The present disclosure provides a method of fabricating a semiconductor device that includes providing a semiconductor substrate, forming a trench in the substrate, where a bottom surface of the trench has a first crystal plane orientation and a side surface of the trench has a second crystal plane orientation, and epitaxially (epi) growing a semiconductor material in the trench. The epi process utilizes an etch component. A first growth rate on the first crystal plane orientation is different from a second growth rate on the second crystal plane orientation.
    Type: Application
    Filed: November 25, 2015
    Publication date: March 17, 2016
    Inventor: Jeff J. Xu
  • Publication number: 20160068843
    Abstract: The present invention relates to compositions and methods for development of resistance-proof siRNA therapeutics for prevention and treatment of influenza viral infections. The compositions include a pharmaceutical composition comprising siRNA molecules that target conserved regions of an influenza virus gene and a pharmaceutically acceptable polymeric carrier. In one embodiment, the polymeric carrier condenses the molecules to form a nanoparticle.
    Type: Application
    Filed: July 7, 2013
    Publication date: March 10, 2016
    Applicant: Sirnaomics, Inc.
    Inventors: Patrick Y. Lu, David M. Evans, John J. Xu, Alan Y. Lu, Qing Ge
  • Publication number: 20160064381
    Abstract: A FinFET device and method for fabricating a FinFET device is disclosed. An exemplary device includes a fin structure formed over a semiconductor substrate. The fin structure includes a source region and a drain region that include a first material layer disposed over the semiconductor substrate, a second material layer disposed over the first material layer, and a third material layer disposed over the second material layer. The first, second, and third material layers are different from each other. The fin structure also has a channel defined between the source and drain regions. The channel includes the first material layer disposed over the semiconductor substrate and the second semiconductor material layer disposed over the first material layer.
    Type: Application
    Filed: November 10, 2015
    Publication date: March 3, 2016
    Inventors: Chih-Hao Chang, Jeff J. Xu
  • Patent number: 9245970
    Abstract: A semiconductor structure includes a semiconductor substrate. The semiconductor structure further includes an interfacial layer over the semiconductor substrate, the interfacial layer having a capacitive effective thickness of less than 1.37 nanometers (nm). The semiconductor structure further includes a high-k dielectric layer over the interfacial layer.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: January 26, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Liang-Gi Yao, Chun-Hu Cheng, Chen-Yi Lee, Jeff J. Xu, Clement Hsingjen Wann
  • Publication number: 20150380554
    Abstract: A field effect transistor includes a substrate comprising a fin structure. The field effect transistor further includes an isolation structure in the substrate. The field effect transistor further includes a source/drain (S/D) recess cavity below a top surface of the substrate. The S/D recess cavity is between the fin structure and the isolation structure. The field effect transistor further includes a strained structure in the S/D recess cavity. The strain structure includes a lower portion. The lower portion includes a first strained layer, wherein the first strained layer is in direct contact with the isolation structure, and a dielectric layer, wherein the dielectric layer is in direct contact with the substrate, and the first strained layer is in direct contact with the dielectric layer. The strained structure further includes an upper portion comprising a second strained layer overlying the first strained layer.
    Type: Application
    Filed: September 3, 2015
    Publication date: December 31, 2015
    Inventors: Tsung-Lin LEE, Chih-Hao CHANG, Chih-Hsin KO, Feng YUAN, Jeff J. XU
  • Patent number: 9202915
    Abstract: The present disclosure provides a method of fabricating a semiconductor device that includes providing a semiconductor substrate, forming a trench in the substrate, where a bottom surface of the trench has a first crystal plane orientation and a side surface of the trench has a second crystal plane orientation, and epitaxially (epi) growing a semiconductor material in the trench. The epi process utilizes an etch component. A first growth rate on the first crystal plane orientation is different from a second growth rate on the second crystal plane orientation.
    Type: Grant
    Filed: April 9, 2013
    Date of Patent: December 1, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Jeff J. Xu
  • Publication number: 20150333064
    Abstract: A semiconductor device with a metal gate is disclosed. An exemplary semiconductor device with a metal gate includes a semiconductor substrate, source and drain features on the semiconductor substrate, a gate stack over the semiconductor substrate and disposed between the source and drain features. The gate stack includes a HK dielectric layer formed over the semiconductor substrate, a plurality of barrier layers of a metal compound formed on top of the HK dielectric layer, wherein each of the barrier layers has a different chemical composition; and a stack of metals gate layers deposited over the plurality of barrier layers.
    Type: Application
    Filed: July 27, 2015
    Publication date: November 19, 2015
    Inventors: Xiong-Fei Yu, Chun-Yuan Chou, Da-Yuan Lee, Kuang-Yuan Hsu, Jeff J. Xu
  • Patent number: 9190417
    Abstract: A FinFET device and method for fabricating a FinFET device is disclosed. An exemplary method includes providing a semiconductor substrate; forming a fin structure over the semiconductor substrate, the fin structure including a first material portion over the semiconductor substrate and a second material portion over the first material portion; forming a gate structure over a portion of the fin structure, such that the gate structure traverses the fin structure, thereby separating a source region and a drain region of the fin structure, wherein the source and drain regions of the fin structure define a channel therebetween; removing the second material portion from the source and drain regions of the fin structure; and after removing the second material portion, forming a third material portion in the source and drain regions of the fin structure.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: November 17, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Hao Chang, Jeff J. Xu
  • Patent number: 9166022
    Abstract: A FinFET device and method for fabricating a FinFET device is disclosed. An exemplary method includes providing a semiconductor substrate; forming a first fin structure and a second fin structure over the semiconductor substrate; forming a gate structure over a portion of the first and second fin structures, such that the gate structure traverses the first and second fin structures; epitaxially growing a first semiconductor material on exposed portions of the first and second fin structures, such that the exposed portions of the first and second fin structures are merged together; and epitaxially growing a second semiconductor material over the first semiconductor material.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: October 20, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jeff J. Xu, Chih-Hao Chang
  • Patent number: 9147594
    Abstract: A field effect transistor including a substrate which includes, a fin structure, the fin structure having a top surface. The field effect transistor further including an isolation in the substrate and a source/drain (S/D) recess cavity below the top surface of the substrate disposed between the fin structure and the isolation structure. The S/D recess cavity includes a lower portion, the lower portion further includes a first strained layer, a first dielectric film and a second dielectric film, wherein the first strained layer is disposed between the first dielectric film and the second dielectric film. The S/D recess cavity further includes an upper portion including a second strained layer overlying the first strained layer, wherein a ratio of a height of the upper portion to a height of the lower portion ranges from about 0.8 to about 1.2.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: September 29, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tsung-Lin Lee, Chih-Hao Chang, Chih-Hsin Ko, Feng Yuan, Jeff J. Xu
  • Patent number: 9142643
    Abstract: The present disclosure provides an integrated circuit device and method for manufacturing the integrated circuit device. The disclosed method provides substantially defect free epitaxial features. An exemplary method includes forming a gate structure over the substrate; forming recesses in the substrate such that the gate structure interposes the recesses; and forming source/drain epitaxial features in the recesses. Forming the source/drain epitaxial features includes performing a selective epitaxial growth process to form an epitaxial layer in the recesses, and performing a selective etch back process to remove a dislocation area from the epitaxial layer.
    Type: Grant
    Filed: November 15, 2012
    Date of Patent: September 22, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yu-Hung Cheng, Tsz-Mei Kwok, Chun Hsiung Tsai, Jeff J. Xu
  • Publication number: 20150249011
    Abstract: A method of cleaning a semiconductor structure includes rotating a semiconductor structure. The method of cleaning further includes cleaning the semiconductor structure with a hydrogen fluoride (HF)-containing gas. A method of forming a semiconductor device includes forming a recess in a source/drain (S/D) region of a transistor. The method of forming further includes cleaning the recess with a HF-containing gas, the HF-containing gas having an oxide removing rate of about 2 nanometer/minute (nm/min) or less. The method of forming further includes epitaxially forming a strain structure in the recess after the cleaning the recess, the strain structure providing a strain to a channel region of the transistor.
    Type: Application
    Filed: May 15, 2015
    Publication date: September 3, 2015
    Inventors: Liang-Gi YAO, Chia-Cheng CHEN, Ta-Ming KUAN, Jeff J. XU, Clement Hsingjen WANN
  • Patent number: 9105624
    Abstract: A semiconductor device with a metal gate is disclosed. An exemplary semiconductor device with a metal gate includes a semiconductor substrate, source and drain features on the semiconductor substrate, a gate stack over the semiconductor substrate and disposed between the source and drain features. The gate stack includes a HK dielectric layer formed over the semiconductor substrate, a plurality of barrier layers of a metal compound formed on top of the HK dielectric layer, wherein each of the barrier layers has a different chemical composition; and a stack of metals gate layers deposited over the plurality of barrier layers.
    Type: Grant
    Filed: September 26, 2014
    Date of Patent: August 11, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Xiong-Fei Yu, Chun-Yuan Chou, Da-Yuan Lee, Kuang-Yuan Hsu, Jeff J. Xu
  • Publication number: 20150187902
    Abstract: A semiconductor structure includes a semiconductor substrate. The semiconductor structure further includes an interfacial layer over the semiconductor substrate, the interfacial layer having a capacitive effective thickness of less than 1.37 nanometers (nm). The semiconductor structure further includes a high-k dielectric layer over the interfacial layer.
    Type: Application
    Filed: March 9, 2015
    Publication date: July 2, 2015
    Inventors: Liang-Gi YAO, Chun-Hu CHENG, Chen-Yi LEE, Jeff J. XU, Clement Hsingjen WANN
  • Patent number: 9040393
    Abstract: A method of forming a semiconductor device includes chemically cleaning a surface of a substrate to form a chemical oxide material on the surface. At least a portion of the chemical oxide material is removed at a removing rate of about 2 nanometer/minute (nm/min) or less. Thereafter, a gate dielectric layer is formed over the surface of the substrate.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 26, 2015
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Liang-Gi Yao, Chia-Cheng Chen, Ta-Ming Kuan, Jeff J. Xu, Clement Hsingjen Wann
  • Patent number: 9006056
    Abstract: A method of performing an ultraviolet (UV) curing process on an interfacial layer over a semiconductor substrate, the method includes supplying a gas flow rate ranging from 10 standard cubic centimeters per minute (sccm) to 5 standard liters per minute (slm), wherein the gas comprises inert gas. The method further includes heating the interfacial layer at a temperature less than or equal to 700° C. Another method of performing an annealing process on an interfacial layer over a semiconductor substrate, the second method includes supplying a gas flow rate ranging from 10 sccm to 5 slm, wherein the gas comprises inert gas. The method further includes heating the interfacial layer at a temperature less than or equal to 600° C.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: April 14, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Liang-Gi Yao, Chun-Hu Cheng, Chen-Yi Lee, Jeff J. Xu, Clement Hsingjen Wann
  • Patent number: 8999794
    Abstract: An integrated circuit device and method for manufacturing the integrated circuit device are disclosed. In an example, the method includes forming a gate structure over a substrate; forming a doped region in the substrate; performing a first etching process to remove the doped region and form a trench in the substrate; and performing a second etching process that modifies the trench by removing portions of the substrate.
    Type: Grant
    Filed: July 14, 2011
    Date of Patent: April 7, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ziwei Fang, Ying Zhang, Jeff J. Xu