Patents by Inventor Jack Mandelman

Jack Mandelman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7804148
    Abstract: An opto-thermal annealing mask stack layer includes a thermal dissipative layer located over a substrate. A reflective layer is located upon the thermal dissipative layer. A transparent capping layer, that may have a thickness from about 10 to about 100 angstroms, is located upon the reflective layer. The opto-thermal annealing mask layer may be used as a gate electrode within a field effect device.
    Type: Grant
    Filed: February 16, 2006
    Date of Patent: September 28, 2010
    Assignee: International Business Machines Corporation
    Inventors: Louis L. Hsu, Jack A. Mandelman, Chandrasekhar Narayan, Chun-Yung Sung
  • Publication number: 20100230781
    Abstract: Trench anti-fuse structures, design structures embodied in a machine readable medium for designing, manufacturing, or testing a programmable integrated circuit. The anti-fuse structure includes a trench having a plurality of sidewalls that extend into a substrate, a doped region in the semiconductor material of the substrate proximate to the sidewalls of the trench, a conductive plug in the trench, and a dielectric layer on the sidewalls of the trench. The dielectric layer is disposed between the conductive plug and the doped region. The dielectric layer is configured so that a programming voltage applied between the doped region and the conductive plug causes a breakdown of the dielectric layer within a region of the trench. The trench sidewalls are arranged with a cross-sectional geometrical shape that is independent of position between a bottom wall of the deep trench and a top surface of the substrate.
    Type: Application
    Filed: August 7, 2009
    Publication date: September 16, 2010
    Applicant: International Business Machines Corporation
    Inventors: Roger A. Booth, JR., Kangguo Cheng, Jack A. Mandelman, William R. Tonti
  • Patent number: 7795661
    Abstract: The present invention relates to a semiconductor device that contains at least one trench capacitor and at least one vertical transistor, and methods for forming such a semiconductor device. Specifically, the trench capacitor is located in a semiconductor substrate and comprises an outer electrode, an inner electrode, and a node dielectric layer located between the outer electrode and the inner electrode. The vertical transistor is located over the trench capacitor and comprises a source region, a drain region, a channel region, a gate dielectric, and a gate electrode. The channel region of the vertical transistor is located in a tensilely or compressively strained semiconductor layer that is oriented perpendicularly to a surface of the semiconductor substrate. Preferably, the tensilely or compressively strained semiconductor layer is embedded in an insulator structure, so that the vertical transistor has a semiconductor-on-insulator (SOI) configuration.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: September 14, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Jack A. Mandelman
  • Patent number: 7790530
    Abstract: A DRAM memory cell and process sequence for fabricating a dense (20 or 18 square) layout is fabricated with silicon-on-insulator (SOI) CMOS technology. Specifically, the present invention provides a dense, high-performance SRAM cell replacement that is compatible with existing SOI CMOS technologies. Various gain cell layouts are known in the art. The present invention improves on the state of the art by providing a dense layout that is fabricated with SOI CMOS. In general terms, the memory cell includes a first transistor provided with a gate, a source, and a drain respectively; a second transistor having a first gate, a second gate, a source, and a drain respectively; and a capacitor having a first terminal, wherein the first terminal of said capacitor and the second gate of said second transistor comprise a single entity.
    Type: Grant
    Filed: October 21, 2008
    Date of Patent: September 7, 2010
    Assignee: International Business Machines Corporation
    Inventors: Jack A. Mandelman, Kangguo Cheng, Ramachandra Divakaruni, Carl J. Radens, Geng Wang
  • Patent number: 7785959
    Abstract: A method is provided for fabricating a multi-port memory in which a plurality of parallel connected capacitors are in a cell. A plurality of trench capacitors are formed which have capacitor dielectric layers extending along walls of the plurality of trenches, the plurality of trench capacitors having first capacitor plates and second capacitor plates opposite the capacitor dielectric layers from the first capacitor plates. The first capacitor plates are conductively tied together and the second capacitor plates are conductively tied together. In this way, the first capacitor plates are adapted to receive a same variable voltage and the second capacitor plates are adapted to receive a same fixed voltage.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: August 31, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Ramachandra Divakaruni, Jack A. Mandelman, Carl J. Radens, Geng Wang
  • Patent number: 7784009
    Abstract: Electrically programmable fuses for an integrated circuit and design structures thereof are presented, wherein the electrically programmable fuse has a first terminal portion and a second terminal portion interconnected by a fuse element. The first terminal portion and the second terminal portion reside over a first support and a second support, respectively, with the first support and the second support being spaced apart, and the fuse element bridging the distance between the first terminal portion over the first support and the second terminal portion over the second support. The fuse, first support and second support define a ?-shaped structure in elevational cross-section through the fuse element. The first terminal portion, second terminal portion and fuse element are coplanar, with the fuse element residing above a void. The design structure for the fuse is embodied in a machine-readable medium for designing, manufacturing or testing a design of the fuse.
    Type: Grant
    Filed: October 25, 2007
    Date of Patent: August 24, 2010
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Jack A. Mandelman, William R. Tonti
  • Patent number: 7777296
    Abstract: A nano-fuse structural arrangement, includes, for example, a semiconductor substrate having an electrically conductive region formed thereon; an electrically conductive elongated nano-structure having a maximum diameter of less than approximately 50 nm and a maximum length of approximately 250 nm and being formed on the electrically conductive region; a barrier having barrier parts completely spaced from and completely surrounding elongated outer surfaces of the nano-structure, the spaces between the barrier and surfaces consisting essentially of a vacuum and being approximately equally spaced, so that the electrically conductive elongated nano-structure is blowable responsive to an electrical current flowable there through in a range of approximately 4 ?A to approximately 120 ?A.
    Type: Grant
    Filed: December 5, 2006
    Date of Patent: August 17, 2010
    Assignee: International Business Machines Corporation
    Inventors: Haining S. Yang, Jack A. Mandelman
  • Patent number: 7772649
    Abstract: A masking layer is applied over a top semiconductor layer and patterned to expose in an opening a shallow trench isolation structure and a portion of a top semiconductor region within which a first source/drain region and a body is to be formed. Ions are implanted into a portion of a buried insulator layer within the area of the opening to form damaged buried insulator region. The shallow trench isolation structure is removed and the damaged buried insulator region is etched selective to undamaged buried insulator portions to form a cavity. A dielectric layer is formed on the sidewalls and the exposed bottom surface of the top semiconductor region and a back gate filling the cavity is formed. A contact is formed to provide an electrical bias to the back gate so that the electrical potential of the body and the first source/drain region is electrically modulated.
    Type: Grant
    Filed: February 25, 2008
    Date of Patent: August 10, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Louis C. Hsu, Jack A. Mandelman, Carl Radens, William Tonti
  • Patent number: 7759191
    Abstract: The present invention relates to a semiconductor device that contains at least one trench capacitor and at least one vertical transistor, and methods for forming such a semiconductor device. Specifically, the trench capacitor is located in a semiconductor substrate and comprises an outer electrode, an inner electrode, and a node dielectric layer located between the outer electrode and the inner electrode. The vertical transistor is located over the trench capacitor and comprises a source region, a drain region, a channel region, a gate dielectric, and a gate electrode. The channel region of the vertical transistor is located in a tensilely or compressively strained semiconductor layer that is oriented perpendicularly to a surface of the semiconductor substrate. Preferably, the tensilely or compressively strained semiconductor layer is embedded in an insulator structure, so that the vertical transistor has a semiconductor-on-insulator (SOI) configuration.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: July 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Jack A. Mandelman
  • Patent number: 7728371
    Abstract: An isolated shallow trench isolation portion is formed in a top semiconductor portion of a semiconductor-on-insulator substrate along with a shallow trench isolation structure. A trench in the shape of a ring is formed around a doped top semiconductor portion and filled with a conductive material such as doped polysilicon. The isolated shallow trench isolation portion and the portion of a buried insulator layer bounded by a ring of the conductive material are etched to form a cavity. A capacitor dielectric is formed on exposed semiconductor surfaces within the cavity and above the doped top semiconductor portion. A conductive material portion formed in the trench and above the doped top semiconductor portion constitutes an inner electrode of a capacitor, while the ring of the conductive material, the doped top semiconductor portion, and a portion of a handle substrate abutting the capacitor dielectric constitute a second electrode.
    Type: Grant
    Filed: September 19, 2007
    Date of Patent: June 1, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Louis C Hsu, Jack A. Mandelman, William Tonti
  • Patent number: 7700466
    Abstract: In one embodiment, a mandrel and an outer dummy spacer may be employed to form a first conductivity type region. The mandrel is removed to form a recessed region wherein a second conductivity type region is formed. In another embodiment, a mandrel is removed from within shallow trench isolation to form a recessed region, in which an inner dummy spacer is formed. A first conductivity type region and a second conductivity region are formed within the remainder of the recessed region. An anneal is performed so that the first conductivity type region and the second conductivity type region abut each other by diffusion. A gate electrode is formed in self-alignment to the p-n junction between the first and second conductivity regions. The p-n junction controlled by the gate electrode, which may be sublithographic, constitutes an inventive tunneling effect transistor.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: April 20, 2010
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Jack A. Mandelman
  • Patent number: 7672105
    Abstract: An apparatus for disabling a circuit when the circuit is in a first preselected condition includes a critical element that has an enable state and a disable state. The critical element is configured in relation to the circuit such that the circuit cannot operate normally if the critical element is in the disable state. A trigger generates a state signal that causes the critical element to enter the disable state when a comparison of a current condition to a stored value indicates that the circuit is in the first preselected condition. In a method of controlling operation of a circuit, a current condition is sensed. Whether the current condition corresponds to a stored value is determined. If the current condition corresponds to the stored value, then a critical element is caused to enter a disable state so that the circuit is prevented from operating normally.
    Type: Grant
    Filed: August 28, 2006
    Date of Patent: March 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: John M. Borkenhagen, William P. Hovis, Daniel P. Kolz, Jack A. Mandelman
  • Patent number: 7659599
    Abstract: In an aspect, a method is provided for forming a silicon-on-insulator (SOI) layer. The method includes the steps of (1) providing a silicon substrate; (2) selectively implanting the silicon substrate with oxygen using a low implant energy to form an ultra-thin patterned seed layer; and (3) employing the ultra-thin patterned seed layer to form a patterned SOI layer on the silicon substrate. Numerous other aspects are provided.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: February 9, 2010
    Assignee: International Business Machines Corporation
    Inventors: Roger Allen Booth, Jr., Louis Lu-Chen Hsu, Jack A. Mandelman, William R. Tonti
  • Patent number: 7659168
    Abstract: In a first aspect, a first apparatus is provided. The first apparatus is an eFuse including (1) a semiconducting layer above an insulating oxide layer of a substrate; (2) a diode formed in the semiconducting layer; and (3) a silicide layer formed on the diode. Numerous other aspects are provided.
    Type: Grant
    Filed: November 3, 2005
    Date of Patent: February 9, 2010
    Assignee: International Business Machines Corporation
    Inventors: Louis Lu-Chen Hsu, Jack A. Mandelman, William R. Tonti
  • Patent number: 7656005
    Abstract: Electrically programmable fuse structures for an integrated circuit and methods of fabrication thereof are presented, wherein the electrically programmable fuse has a first terminal portion and a second terminal portion interconnected by a fuse element. The first terminal portion and the second terminal portion reside over a first support and a second support, respectively, with the first support and the second support being spaced apart, and the fuse element bridging the distance between the first terminal portion over the first support and the second terminal portion over the second support. The fuse, first support and second support define a ?-shaped structure in elevational cross-section through the fuse element. The first terminal portion, second terminal portion and fuse element are coplanar, with the fuse element residing above a void, which in one embodiment is filed by a thermally insulating dielectric material that surrounds the fuse element.
    Type: Grant
    Filed: June 26, 2007
    Date of Patent: February 2, 2010
    Assignee: International Business Machines Corporation
    Inventors: Roger A. Booth, Jr., Kangguo Cheng, Jack A. Mandelman, William R. Tonti
  • Patent number: 7645645
    Abstract: Electrically programmable fuse structures for an integrated circuit and methods of fabrication thereof are presented, wherein the electrically programmable fuse has a first terminal portion and a second terminal portion interconnected by a fuse element. The first terminal portion and the second terminal portion reside at different heights relative to a supporting surface of the fuse structure, and the interconnecting fuse element transitions between the different heights of the first terminal portion and the second terminal portion. The first and second terminal portions are oriented parallel to the supporting surface, while the fuse element includes a portion oriented orthogonal to the supporting surface, and includes at least one right angle bend where transitioning from at least one of the first and second terminal portions to the orthogonal oriented portion of the fuse element.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: January 12, 2010
    Assignee: International Business Machines Corporation
    Inventors: William P. Hovis, Louis Lu-Chen Hsu, Jack A. Mandelman, William R. Tonti, Chih-Chao Yang
  • Patent number: 7642588
    Abstract: In a first aspect, a first apparatus is provided. The first apparatus is a memory cell of a substrate that includes (1) a PFET with an orientation approximately planar to a surface of the substrate; and (2) an NFET coupled to the approximately planar PFET. An orientation of the NFET in the substrate is approximately perpendicular to the orientation of the PFET. Numerous other aspects are provided.
    Type: Grant
    Filed: October 26, 2005
    Date of Patent: January 5, 2010
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Jack A. Mandelman
  • Publication number: 20090309136
    Abstract: A semiconductor device and a method of fabricating a semiconductor device, wherein the method comprises forming, on a substrate, a plurality of planarized fin bodies to be used for customized fin field effect transistor (FinFET) device formation; forming a nitride spacer around each of the plurality of fin bodies; forming an isolation region in between each of the fin bodies; and coating the plurality of fin bodies, the nitride spacers, and the isolation regions with a protective film. The fabricated semiconductor device is adapted to be used in customized applications as a customized semiconductor device.
    Type: Application
    Filed: August 4, 2009
    Publication date: December 17, 2009
    Applicant: International Business Machines Corporation
    Inventors: Howard H. Chen, Louis C. Hsu, Jack A. Mandelman, Chun-Yung Sung
  • Patent number: 7622946
    Abstract: A design structure for an impedance matcher that automatically matches impedance between a driver and a receiver. The design structure for an impedance matcher includes a phase-locked loop (PLL) circuit that locks onto a data signal provided by the driver. The impedance matcher also includes tunable impedance matching circuitry responsive to one or more voltage-controlled oscillator control signals within the PLL circuit so as to generate an output signal that is impedance matched with the receiver.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: November 24, 2009
    Assignee: International Business Machines Corporation
    Inventors: Wagdi W. Abadeer, Louis Lu-Chen Hsu, Jack A. Mandelman
  • Patent number: 7615828
    Abstract: In a first aspect, a first apparatus is provided. The first apparatus is a semiconductor device on a substrate that includes (1) a first metal-oxide-semiconductor field-effect transistor (MOSFET); (2) a second MOSFET coupled to the first MOSFET, wherein portions of the first and second MOSFETs form first and second bipolar junction transistors (BJTs) which are coupled into a loop; and (3) a conductive region that electrically couples a source diffusion region of the first or second MOSFET with a doped well region below the source diffusion region. The conductive region is adapted to prevent an induced current from forming in the loop. Numerous other aspects are provided.
    Type: Grant
    Filed: July 10, 2006
    Date of Patent: November 10, 2009
    Assignee: International Business Machines Corporation
    Inventors: Jack A. Mandelman, William R. Tonti