Patents by Inventor Jack O. Chu

Jack O. Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7074686
    Abstract: A method of forming a thin, high-quality relaxed SiGe-on-insulator substrate material is provided which first includes forming a SiGe or pure Ge layer on a surface of a first single crystal Si layer which is present atop a barrier layer that is resistant to the diffusion of Ge. Optionally forming a Si cap layer over the SiGe or pure Ge layer, and thereafter heating the various layers at a temperature which permits interdiffusion of Ge throughout the first single crystal Si layer, the optional Si cap and the SiGe or pure Ge layer thereby forming a substantially relaxed, single crystal SiGe layer atop the barrier layer. Additional SiGe regrowth and/or formation of a strained epi-Si layer may follow the above steps. SiGe-on-insulator substrate materials as well as structures including at least the SiGe-on-insulator substrate materials are also disclosed herein.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: July 11, 2006
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Jack O. Chu, Keith E. Fogel, Steven J. Koester, Devendra K. Sadana
  • Patent number: 6972250
    Abstract: A method (and structure) of forming a vertically-self-aligned silicide contact to an underlying SiGe layer, includes forming a layer of silicon of a first predetermined thickness on the SiGe layer and forming a layer of metal on the silicon layer, where the metal layer has a second predetermined thickness. A thermal annealing process at a predetermined temperature then forms a silicide of the silicon and metal, where the predetermined temperature is chosen to substantially preclude penetration of the silicide into the underlying SiGe layer.
    Type: Grant
    Filed: April 22, 2003
    Date of Patent: December 6, 2005
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Roy A. Carruthers, Kevin K. Chan, Jack O. Chu, Guy Moshe Cohen, Steven J. Koester, Christian Lavoie, Ronnen A. Roy
  • Patent number: 6949761
    Abstract: A structure and method of fabricating a high-mobility semiconductor layer structure and field-effect transistor (MODFET) that includes a high-mobility conducting channel, while at the same time, maintaining counter doping to control deleterious short-channel effects. The MODFET design includes a high-mobility conducting channel layer wherein the method allows the counter doping to be formed using a standard technique such as ion implantation, and further allows the high-mobility channel to be in close proximity to the counter doping without degradation of the mobility.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: September 27, 2005
    Assignee: International Business Machines Corporation
    Inventors: Jack O. Chu, Steven J. Koester, Qiqing C. Ouyang
  • Patent number: 6875279
    Abstract: An apparatus and method for forming at least a portion of an electronic device include a High Vacuum-Chemical Vapor Deposition (UHV-CVD) system and a Low Pressure-Chemical Vapor Deposition (LPCVD) system using a common reactor. The invention overcomes the problem of silicon containing wafers being dipped in HF acid prior to CVD processing, and the problem of surface passivation between processes in multiple CVD reactors.
    Type: Grant
    Filed: November 16, 2001
    Date of Patent: April 5, 2005
    Assignee: International Business Machines Corporation
    Inventors: Jack O. Chu, Basanth Jagannathan, Ryan Wayne Wuthrich
  • Patent number: 6855963
    Abstract: A silicon and silicon germanium based semiconductor MODFET device design and method of manufacture. The MODFET design includes a high-mobility layer structure capable of ultra high-speed, low-noise for a variety of communication applications including RF, microwave, sub-millimeter-wave and millimeter-wave. The epitaxial field effect transistor layer structure includes critical (vertical and lateral) device scaling and layer structure design for a high mobility strained n-channel and p-channel transistor incorporating silicon and silicon germanium layers to form the optimum modulation-doped heterostructure on an ultra thin SOI or SGOI substrate capable of achieving greatly improved RF performance.
    Type: Grant
    Filed: August 29, 2003
    Date of Patent: February 15, 2005
    Assignee: International Business Machines Corporation
    Inventors: Jack O. Chu, Qiqing C. Ouyang
  • Patent number: 6855649
    Abstract: A method to obtain thin (less than 300 nm) strain-relaxed Si1-xGex buffer layers on Si or silicon-on-insulator (SOI) substrates. These buffer layers have a homogeneous distribution of misfit dislocations that relieve the strain, remarkably smooth surfaces, and a low threading dislocation (TD) density, i.e. less than 106 cm2. The approach begins with the growth of a pseudomorphic or nearly pseudomorphic Si1-xGex layer, i.e., a layer that is free of misfit dislocations, which is then implanted with He or other light elements and subsequently annealed to achieve the substantial strain relaxation. The very effective strain relaxation mechanism operating with this method is dislocation nucleation at He-induced platelets (not bubbles) that lie below the Si/Si1-xGex interface, parallel to the Si(001) surface.
    Type: Grant
    Filed: November 19, 2002
    Date of Patent: February 15, 2005
    Assignee: International Business Machines Corporation
    Inventors: Silke H. Christiansen, Jack O. Chu, Alfred Grill, Patricia M. Mooney
  • Patent number: 6805962
    Abstract: A method of forming a thin, high-quality relaxed SiGe-on-insulator substrate material is provided which first includes forming a SiGe or pure Ge layer on a surface of a first single crystal Si layer which is present atop a barrier layer that is resistant to the diffusion of Ge. Optionally forming a Si cap layer over the SiGe or pure Ge layer, and thereafter heating the various layers at a temperature which permits interdiffusion of Ge throughout the first single crystal Si layer, the optional Si cap and the SiGe or pure Ge layer thereby forming a substantially relaxed, single crystal SiGe layer atop the barrier layer. Additional SiGe regrowth and/or formation of a strained epi-Si layer may follow the above steps. SiGe-on-insulator substrate materials as well as structures including at least the SiGe-on-insulator substrate materials are also disclosed herein.
    Type: Grant
    Filed: January 23, 2002
    Date of Patent: October 19, 2004
    Assignee: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Jack O. Chu, Keith E. Fogel, Steven J. Koester, Devendra K. Sadana, John Albrecht Ott
  • Publication number: 20040192069
    Abstract: A method of forming a thin, high-quality relaxed SiGe-on-insulator substrate material is provided which first includes forming a SiGe or pure Ge layer on a surface of a first single crystal Si layer which is present atop a barrier layer that is resistant to the diffusion of Ge. Optionally forming a Si cap layer over the SiGe or pure Ge layer, and thereafter heating the various layers at a temperature which permits interdiffusion of Ge throughout the first single crystal Si layer, the optional Si cap and the SiGe or pure Ge layer thereby forming a substantially relaxed, single crystal SiGe layer atop the barrier layer. Additional SiGe regrowth and/or formation of a strained epi-Si layer may follow the above steps. SiGe-on-insulator substrate materials as well as structures including at least the SiGe-on-insulator substrate materials are also disclosed herein.
    Type: Application
    Filed: April 14, 2004
    Publication date: September 30, 2004
    Applicant: International Business Machines Corporation
    Inventors: Stephen W. Bedell, Jack O. Chu, Keith E. Fogel, Steven J. Koester, Devendra K. Sadana
  • Patent number: 6780735
    Abstract: We provide a method of doping an Si or SiGe film with carbon or boron. By reducing the silicon precursor pressure, heavily-doped films may be obtained. A single dopant source may be used. The doped Si and SiGe films are of suitable quality for use in a transistor such as an HBT.
    Type: Grant
    Filed: April 30, 2001
    Date of Patent: August 24, 2004
    Assignee: International Business Machines Corporation
    Inventors: Basanth Jagannathan, Jack O. Chu, Ryan W. Wuthrich, Byeongju Park
  • Patent number: 6743651
    Abstract: A method of fabricating high-quality, substantially relaxed SiGe-on-insulator substrate is provided by implanting oxygen into a Si/SiGe multilayer heterostructure which comprises alternating Si and SiGe layers. Specifically, the high quality, relaxed SiGe-on-insulator is formed by implanting oxygen ions into a multilayer heterostructure which includes alternating layers of Si and SiGe. Following, the implanting step, the multilayer heterostructure containing implanted oxygen ions is annealed, i.e., heated, so as to form a buried oxide region predominately within one of the Si layers of the multilayer structure.
    Type: Grant
    Filed: April 23, 2002
    Date of Patent: June 1, 2004
    Assignee: International Business Machines Corporation
    Inventors: Jack O. Chu, Feng-Yi Huang, Steven J. Koester, Devendra K. Sadana
  • Patent number: 6709903
    Abstract: A method to obtain thin (<300 nm) strain-relaxed Si1−xGex buffer layers on Si or silicon-on-insulator (SOI) substrates. These buffer layers have a homogeneous distribution of misfit dislocations that relieve the strain, remarkably smooth surfaces, and a low threading dislocation (TD) density, i.e. <106 cm−2. The approach begins with the growth of a pseudomorphic Si1−xGex layer, i.e., a layer that is free of misfit dislocations, which is then implanted with He or other light elements and subsequently annealed to achieve the substantial strain relaxation. The very effective strain relaxation mechanism operating with this method is dislocation nucleation at He-induced platelets (not bubbles) that lie below the Si/Si1−xGex interface, parallel to the Si(001) surface.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: March 23, 2004
    Assignee: International Business Machines Corporation
    Inventors: Silke H. Christiansen, Jack O. Chu, Alfred Grill, Patricia M. Mooney
  • Patent number: 6690072
    Abstract: A method (and structure) of forming a vertically-self-aligned silicide contact to an underlying SiGe layer, includes forming a layer of silicon of a first predetermined thickness on the SiGe layer and forming a layer of metal on the silicon layer, where the metal layer has a second predetermined thickness. A thermal annealing process at a predetermined temperature then forms a silicide of the silicon and metal, where the predetermined temperature is chosen to substantially preclude penetration of the silicide into the underlying SiGe layer.
    Type: Grant
    Filed: May 24, 2002
    Date of Patent: February 10, 2004
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Roy A. Carruthers, Kevin K. Chan, Jack O. Chu, Guy Moshe Cohen, Steven J. Koester, Christian Lavoie, Ronnen A. Roy
  • Publication number: 20030218189
    Abstract: A method to obtain thin (less than 300 nm) strain-relaxed Si1−xGex buffer layers on Si or silicon-on-insulator (SOI) substrates. These buffer layers have a homogeneous distribution of misfit dislocations that relieve the strain, remarkably smooth surfaces, and a low threading dislocation (TD) density, i.e. less than 106 cm2. The approach begins with the growth of a pseudomorphic or nearly pseudomorphic Si1−xGex layer, i.e., a layer that is free of misfit dislocations, which is then implanted with He or other light elements and subsequently annealed to achieve the substantial strain relaxation. The very effective strain relaxation mechanism operating with this method is dislocation nucleation at He-induced platelets (not bubbles) that lie below the Si/Si1−xGex interface, parallel to the Si(001) surface.
    Type: Application
    Filed: November 19, 2002
    Publication date: November 27, 2003
    Applicant: International Business Machines Corporation
    Inventors: Silke H. Christiansen, Jack O. Chu, Alfred Grill, Patricia M. Mooney
  • Publication number: 20030219971
    Abstract: A method (and structure) of forming a vertically-self-aligned silicide contact to an underlying SiGe layer, includes forming a layer of silicon of a first predetermined thickness on the SiGe layer and forming a layer of metal on the silicon layer, where the metal layer has a second predetermined thickness. A thermal annealing process at a predetermined temperature then forms a silicide of the silicon and metal, where the predetermined temperature is chosen to substantially preclude penetration of the silicide into the underlying SiGe layer.
    Type: Application
    Filed: April 22, 2003
    Publication date: November 27, 2003
    Applicant: International Business Machines Corporation
    Inventors: Cyril Cabral, Roy A. Carruthers, Kevin K. Chan, Jack O. Chu, Guy Moshe Cohen, Steven J. Koester, Christian Lavoie, Ronnen A. Roy
  • Publication number: 20030219965
    Abstract: A method (and structure) of forming a vertically-self-aligned silicide contact to an underlying SiGe layer, includes forming a layer of silicon of a first predetermined thickness on the SiGe layer and forming a layer of metal on the silicon layer, where the metal layer has a second predetermined thickness. A thermal annealing process at a predetermined temperature then forms a silicide of the silicon and metal, where the predetermined temperature is chosen to substantially preclude penetration of the silicide into the underlying SiGe layer.
    Type: Application
    Filed: May 24, 2002
    Publication date: November 27, 2003
    Applicant: International Business Machines Corporation
    Inventors: Cyril Cabral, Roy A. Carruthers, Kevin K. Chan, Jack O. Chu, Guy Moshe Cohen, Steven J. Koester, Christian Lavoie, Ronnen A. Roy
  • Patent number: 6649492
    Abstract: A method for fabricating a strained Si based layer, devices manufactured in this layer, and electronic systems comprising such layers and devices are disclosed. The method comprises the steps of growing epitaxially a SiGe layer on a substrate, and creating a varying Ge concentration in this SiGe layer. The Ge concentration in the SiGe layer includes a unique Ge overshoot zone, where the Ge concentration is abruptly and significantly increased. The Si based layer is epitaxially deposited onto the SiGe layer, whereby is becomes tensilely strained. It is also disclosed that the strained Si based layer, typically Si or SiGe, can be transferred to a different bulk substrate, or to an insulator.
    Type: Grant
    Filed: February 11, 2002
    Date of Patent: November 18, 2003
    Assignee: International Business Machines Corporation
    Inventors: Jack O. Chu, Khaled Ismail
  • Publication number: 20030203600
    Abstract: A method for fabricating a strained Si based layer, devices manufactured in this layer, and electronic systems comprising such layers and devices are disclosed. The method comprises the steps of growing epitaxially a SiGe layer on a substrate, and creating a varying Ge concentration in this SiGe layer. The Ge concentration in the SiGe layer includes a unique Ge overshoot zone, where the Ge concentration is abruptly and significantly increased. The Si based layer is epitaxially deposited onto the SiGe layer, whereby is becomes tensilely strained. It is also disclosed that the strained Si based layer, typically Si or SiGe, can be transferred to a different bulk substrate, or to an insulator.
    Type: Application
    Filed: June 5, 2003
    Publication date: October 30, 2003
    Applicant: International Business Machines Corporation
    Inventors: Jack O. Chu, Khaled Ismail
  • Publication number: 20030201468
    Abstract: A method to obtain thin (<300 nm) strain-relaxed Si1-xGex buffer layers on Si or silicon-on-insulator (SOI) substrates. These buffer layers have a homogeneous distribution of misfit dislocations that relieve the strain, remarkably smooth surfaces, and a low threading dislocation (TD) density, i.e. <106 cm−2. The approach begins with the growth of a pseudomorphic Si1-xGex layer, i.e., a layer that is free of misfit dislocations, which is then implanted with He or other light elements and subsequently annealed to achieve the substantial strain relaxation. The very effective strain relaxation mechanism operating with this method is dislocation nucleation at He-induced platelets (not bubbles) that lie below the Si/Si1-xGex interface, parallel to the Si(001) surface.
    Type: Application
    Filed: April 30, 2003
    Publication date: October 30, 2003
    Inventors: Silke H. Christiansen, Jack O. Chu, Alfred Grill, Patricia M. Mooney
  • Publication number: 20030199126
    Abstract: A method of fabricating high-quality, substantially relaxed SiGe-on-insulator substrate is provided by implanting oxygen into a Si/SiGe multilayer heterostructure which comprises alternating Si and SiGe layers. Specifically, the high quality, relaxed SiGe-on-insulator is formed by implanting oxygen ions into a multilayer heterostructure which includes alternating layers of Si and SiGe. Following, the implanting step, the multilayer heterostructure containing implanted oxygen ions is annealed, i.e., heated, so as to form a buried oxide region predominately within one of the Si layers of the multilayer structure.
    Type: Application
    Filed: April 23, 2002
    Publication date: October 23, 2003
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Jack O. Chu, Feng-Yi Huang, Steven J. Koester, Devendra K. Sadana
  • Publication number: 20030153161
    Abstract: A method for fabricating a strained Si based layer, devices manufactured in this layer, and electronic systems comprising such layers and devices are disclosed. The method comprises the steps of growing epitaxially a SiGe layer on a substrate, and creating a varying Ge concentration in this SiGe layer. The Ge concentration in the SiGe layer includes a unique Ge overshoot zone, where the Ge concentration is abruptly and significantly increased. The Si based layer is epitaxially deposited onto the SiGe layer, whereby is becomes tensilely strained. It is also disclosed that the strained Si based layer, typically Si or SiGe, can be transferred to a different bulk substrate, or to an insulator.
    Type: Application
    Filed: February 11, 2002
    Publication date: August 14, 2003
    Inventors: Jack O. Chu, Khaled Ismail