Patents by Inventor Jack Oon Chu

Jack Oon Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7244958
    Abstract: A structure and method of fabrication for PFET devices in a compressively strained Ge layer is disclosed. The fabrication method of such devices is compatible with standard CMOS technology and it is fully scalable. The processing includes selective epitaxial depositions of an over 50% Ge content buffer layer, a pure Ge layer, and a SiGe top layer. Fabricated buried channel PMOS devices hosted in the compressively strained Ge layer show superior device characteristics relative to similar Si devices.
    Type: Grant
    Filed: June 24, 2004
    Date of Patent: July 17, 2007
    Assignee: International Business Machines Corporation
    Inventors: Huiling Shang, Meikei Ieong, Jack Oon Chu, Kathryn W. Guarini
  • Patent number: 7205604
    Abstract: A method for forming and the structure of a strained vertical channel of a field effect transistor, a field effect transistor and CMOS circuitry is described incorporating a drain, body and source region on a sidewall of a vertical single crystal semiconductor structure wherein a heterojunction is formed between the source and body of the transistor, wherein the source region and channel are independently lattice strained with respect to the body region and wherein the drain region contains a carbon doped region to prevent the diffusion of dopants (boron) into the body. The invention reduces the problem of leakage current from the source region via the heterojunction and lattice strain while independently permitting lattice strain in the channel region for increased mobility via choice of the semiconductor materials.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: April 17, 2007
    Assignee: International Business Machines Corporation
    Inventors: Qiqing Christine Ouyang, Jack Oon Chu
  • Patent number: 7183576
    Abstract: A method and apparatus for depositing single crystal, epitaxial films of silicon carbon and silicon germanium carbon on a plurality of substrates in a hot wall, isothermal UHV-CVD system is described. In particular, a multiple wafer low temperature growth technique in the range from 350° C. to 750° C. is described for incorporating carbon epitaxially in Si and SiGe films with very abrupt and well defined junctions, but without any associated oxygen background contamination. Preferably, these epitakial SiC and SiGeC films are in-situ doped p- or n-type and with the presence of low concentration of carbon <1020 cm?3, the as-grown p- or n-type dopant profile can withstand furnace anneals to temperatures of 850° C. and rapid thermal anneal temperatures to 1000° C.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: February 27, 2007
    Assignee: International Business Machines Corporation
    Inventors: Jack Oon Chu, Basanth Jagannathan, Alfred Grill, Bernard Steele Meyerson, John Albrecht Ott
  • Patent number: 7173274
    Abstract: A SiGe bipolar transistor containing substantially no dislocation defects present between the emitter and collector region and a method of forming the same are provided. The SiGe bipolar transistor includes a collector region of a first conductivity type; a SiGe base region formed on a portion of said collector region; and an emitter region of said first conductivity type formed over a portion of said base region, wherein said collector region and said base region include carbon continuously therein. The SiGe base region is further doped with boron.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: February 6, 2007
    Assignee: International Business Machines Corporation
    Inventors: Jack Oon Chu, Douglas Duane Coolbaugh, James Stuart Dunn, David R. Greenberg, David L. Harame, Basanth Jagannathan, Robb Allen Johnson, Louis D. Lanzerotti, Kathryn Turner Schonenberg, Ryan Wayne Wuthrich
  • Patent number: 7145167
    Abstract: A method and a layered heterostructure for forming high mobility Ge channel field effect transistors is described incorporating a plurality of semiconductor layers on a semiconductor substrate, and a channel structure of a compressively strained epitaxial Ge layer having a higher barrier or a deeper confining quantum well and having extremely high hole mobility for complementary MODFETs and MOSFETs. The invention overcomes the problem of a limited hole mobility due to alloy scattering for a p-channel device with only a single compressively strained SiGe channel layer. This invention further provides improvements in mobility and transconductance over deep submicron state-of-the art Si pMOSFETs in addition to having a broad temperature operation regime from above room temperature (425 K) down to cryogenic low temperatures (0.4 K) where at low temperatures even high device performances are achievable.
    Type: Grant
    Filed: March 11, 2000
    Date of Patent: December 5, 2006
    Assignee: International Business Machines Corporation
    Inventor: Jack Oon Chu
  • Patent number: 7091095
    Abstract: A strained crystalline layer having a tensilely strained SiGe portion and a compressively strained SiGe portion is disclosed. The strained crystalline layer is epitaxially bonded, or grown, on top of a SiGe relaxed buffer layer, in a way that the tensilely strained SiGe has a Ge concentration below that of the SiGe relaxed buffer, and the compressively strained SiGe has a Ge concentration above that of the SiGe relaxed buffer. The strained crystalline layer and the relaxed buffer can reside on top a semi-insulator substrate or on top of an insulating divider layer. In some embodiments the tensile SiGe layer is pure Si, and the compressive SiGe layer is pure Ge. The tensilely strained SiGe layer is suited for hosting electron conduction type devices and the compressively strained SiGe is suited for hosting hole conduction type devices. The strained crystalline layer is capable to seed an epitaxial insulator, or a compound semiconductor layer.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: August 15, 2006
    Assignee: International Business Machines Corporation
    Inventor: Jack Oon Chu
  • Patent number: 7084431
    Abstract: A layered structure for forming electronic devices thereon is provided. The layered structure includes an over-shoot layer, Si1?yGey, within a relaxed Si1?xGex layer, wherein y=X+Z and Z is in the range from 0.01 to 0.1 and X is from 0.35 to 0.5. The over-shoot layer has a thickness that is less than its critical thickness.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: August 1, 2006
    Assignee: International Business Machines Corporation
    Inventors: Jack Oon Chu, Richard Hammond, Khalid EzzEldin Ismail, Steven John Koester, Patricia May Mooney, John A. Ott
  • Patent number: 7083998
    Abstract: An integrated optoelectronic circuit and process for making is described incorporating a photodetector and a MODFET on a chip. The chip contains a single-crystal semiconductor substrate, a buffer layer of SiGe graded in composition, a relaxed SiGe layer, a quantum well layer, an undoped SiGe spacer layer and a doped SiGe supply layer. The photodetector may be a metal-semiconductor-metal (MSM) or a p-i-n device. The detector may be integrated with an n- or p-type MODFET, or both in a CMOS configuration, and the MODFET can incorporate a Schottky or insulating gate. The invention overcomes the problem of producing Si-manufacturing-compatible monolithic high-speed optoelectronic circuits for 850 nm operation by using epixially-grown Si/SiGe heterostructure layers.
    Type: Grant
    Filed: July 1, 2004
    Date of Patent: August 1, 2006
    Assignee: International Business Machines Corporation
    Inventors: Jack Oon Chu, Khalid EzzEldin Ismail, Steven John Koester, Bernd-Ulrich H. Klepser
  • Patent number: 7067855
    Abstract: A structure and method of forming an abrupt doping profile is described incorporating a substrate, a first epitaxial layer of Ge less than the critical thickness having a P or As concentration greater than 5×1019 atoms/cc, and a second epitaxial layer having a change in concentration in its first 40 ? from the first layer of greater than 1×1019 P atoms/cc. Alternatively, a layer of SiGe having a Ge content greater than 0.5 may be selectively amorphized and recrystalized with respect to other layers in a layered structure. The invention overcomes the problem of forming abrupt phosphorus profiles in Si and SiGe layers or films in semiconductor structures such as CMOS, MODFET'S, and HBT's.
    Type: Grant
    Filed: December 12, 2003
    Date of Patent: June 27, 2006
    Assignee: International Business Machines Corporation
    Inventors: Frank Cardone, Jack Oon Chu, Khalid EzzEldin Ismail
  • Patent number: 7038277
    Abstract: A method for forming an integrated circuit on an insulating substrate is described comprising the steps of forming a semiconductor layer on a seed wafer substrate containing an at least partially crystalline porous release layer, processing the semiconductor layer to form a “transferable” device layer containing at least one semiconductor device, and bonding said transferable device layer to a final, insulating substrate before or after separating said device layer from the seed wafer substrate. A second method, for separating a semiconductor layer from a seed wafer substrate, is described wherein an at least partially crystalline porous layer initially connecting the semiconductor layer and seed wafer substrate is split or broken apart by the steps of (i) introducing a fluid including water into the pores of said porous layer, and (ii) expanding said fluid by solidifying or freezing to break apart the porous layer.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: May 2, 2006
    Assignee: International Business Machines Corporation
    Inventors: Jack Oon Chu, Alfred Grill, Dean A. Herman, Jr., Katherine L. Saenger
  • Patent number: 6963078
    Abstract: A strained crystalline layer having a tensilely strained SiGe portion and a compressively strained SiGe portion is disclosed. The strained crystalline layer is epitaxially bonded, or grown, on top of a SiGe relaxed buffer layer, in a way that the tensilely strained SiGe has a Ge concentration below that of the SiGe relaxed buffer, and the compressively strained SiGe has a Ge concentration above that of the SiGe relaxed buffer. The strained crystalline layer and the relaxed buffer can reside on top a semi-insulator substrate or on top of an insulating divider layer. In some embodiments the tensile SiGe layer is pure Si, and the compressive SiGe layer is pure Ge. The tensilely strained SiGe layer is suited for hosting electron conduction type devices and the compressively strained SiGe is suited for hosting hole conduction type devices. The strained crystalline layer is capable to seed an epitaxial insulator, or a compound semiconductor layer.
    Type: Grant
    Filed: March 15, 2003
    Date of Patent: November 8, 2005
    Assignee: International Business Machines Corporation
    Inventor: Jack Oon Chu
  • Patent number: 6943407
    Abstract: A method for forming and the structure of a vertical channel of a field effect transistor, a field effect transistor and CMOS circuitry are described incorporating a drain, body and source region on a sidewall of a vertical single crystal semiconductor structure wherein a hetero-junction is formed between the source and body of the transistor, wherein the source region and channel are independently lattice strained with respect the body region and wherein the drain region contains a carbon doped region to prevent the diffusion of dopants (i.e., B and P) into the body. The invention reduces the problem of short channel effects such as drain induced barrier lowering and the leakage current from the source to drain regions via the hetero-junction and while independently permitting lattice strain in the channel region for increased mobility via choice of the semiconductor materials. The problem of scalability of the gate length below 100 nm is overcome by the heterojunction between the source and body regions.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: September 13, 2005
    Assignee: International Business Machines Corporation
    Inventors: Qiqing Christine Ouyang, Jack Oon Chu
  • Patent number: 6927414
    Abstract: A method for forming and the structure of a strained lateral channel of a field effect transistor, a field effect transistor and CMOS circuitry is described incorporating a drain, body and source region on a single crystal semiconductor substrate wherein a hetero-junction is formed between the source and body of the transistor, wherein the source region and channel are independently lattice strained with respect the body region. The invention reduces the problem of leakage current from the source region via the hetero-junction and lattice strain while independently permitting lattice strain in the channel region for increased mobility via choice of the semiconductor materials and alloy composition.
    Type: Grant
    Filed: June 17, 2003
    Date of Patent: August 9, 2005
    Assignee: International Business Machines Corporation
    Inventors: Qiqing Christine Ouyang, Jack Oon Chu
  • Publication number: 20050161711
    Abstract: Structure and methods of fabrication are disclosed for an enhanced FET devices in which dopant impurities are prevented from diffusing through the gate insulator. The structure comprises a Si:C, or SiGe:C, layer which is sandwiched between the gate insulator and a layer which is doped with impurities in order to provide a preselected workfunction. It is further disclosed how this, and further improvements for FET devices, such as raised source/drain and multifaceted gate on insulator, MODFET on insulator are integrated with strained Si based layer on insulator technology.
    Type: Application
    Filed: February 25, 2005
    Publication date: July 28, 2005
    Applicant: International Business Machines Corporation
    Inventor: Jack Oon Chu
  • Patent number: 6908866
    Abstract: A method and apparatus for depositing single crystal, epitaxial films of silicon carbon and silicon germanium carbon on a plurality of substrates in a hot wall, isothermal UHV-CVD system is described. In particular, a multiple wafer low temperature growth technique in the range from 350° C. to 750° C. is described for incorporating carbon epitaxially in Si and SiGe films with very abrupt and well defined junctions, but without any associated oxygen background contamination. Preferably, these epitaxial SiC and SiGeC films are in-situ doped p- or n-type and with the presence of low concentration of carbon <1020 cm?3, the as-grown p- or n-type dopant profile can withstand furnace anneals to temperatures of 850° C. and rapid thermal anneal temperatures to 1000° C.
    Type: Grant
    Filed: February 10, 2004
    Date of Patent: June 21, 2005
    Assignee: International Business Machines Corporation
    Inventors: Jack Oon Chu, Basanth Jagannathan, Alfred Grill, Bernard Steele Meyerson, John Albrecht Ott
  • Patent number: 6909186
    Abstract: Structure and methods of fabrication are disclosed for an enhanced FET devices in which dopant impurities are prevented from diffusing through the gate insulator. The structure comprises a Si:C, or SiGe:C, layer which is sandwiched between the gate insulator and a layer which is doped with impurities in order to provide a preselected workfunction. It is further disclosed how this, and further improvements for FET devices, such as raised source/drain and multifaceted gate on insulator, MODFET on insulator are integrated with strained Si based layer on insulator technology.
    Type: Grant
    Filed: May 1, 2003
    Date of Patent: June 21, 2005
    Assignee: International Business Machines Corporation
    Inventor: Jack Oon Chu
  • Patent number: 6890835
    Abstract: A method for forming strained Si or SiGe on relaxed SiGe on insulator (SGOI) or a SiGe on Si heterostructure is described incorporating growing epitaxial Si1-yGey layers on a semiconductor substrate, smoothing surfaces by Chemo-Mechanical Polishing, bonding two substrates together via thermal treatments and transferring the SiGe layer from one substrate to the other via highly seletive etching using SiGe itself as the etch-stop. The transferred SiGe layer may have its upper surface smoothed by CMP for epitaxial deposition of relaxed Si1-yGey, and strained Si1-yGey depending upon composition, strained Si, strained SiC, strained Ge, strained GeC, and strained Si1-yGeyC or a heavily doped layer to make electrical contacts of the SiGe/Si heterojunction diodes.
    Type: Grant
    Filed: October 19, 2000
    Date of Patent: May 10, 2005
    Assignee: International Business Machines Corporation
    Inventors: Jack Oon Chu, David R. DiMilia, Lijuan Huang
  • Patent number: 6881259
    Abstract: Analysis of residual gases from a process for depositing a film containing silicon on a crystalline silicon surface to determine partial pressure of hydrogen evolved during deposition develops a signature which indicates temperature and/or concentration of germanium at the deposition surface. Calibration and collection of hydrogen partial pressure data at a rate which is high relative to film deposition rate allows real-time, in-situ, non-destructive determination of material concentration profile over the thickness of the film and/or monitoring the temperature of a silicon film deposition process with increased accuracy and resolution to provide films of a desired thickness with high accuracy.
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: April 19, 2005
    Assignee: International Business Machines Corporation
    Inventors: David C. Ahlgren, Jack Oon Chu, Basanth Jagannathan, Ryan W. Wuthrich
  • Patent number: 6870232
    Abstract: A field effect transistor and method for making is described incorporating self aligned source and drain contacts with Schottky metal-to-semiconductor junction and a T-shaped gate or incorporating highly doped semiconductor material for the source and drain contacts different from the channel material to provide etch selectivity and a T-shaped gate or incorporating a metal for the source and drain contacts and the oxide of the metal for the gate dielectric which is self aligned.
    Type: Grant
    Filed: April 17, 2000
    Date of Patent: March 22, 2005
    Assignee: International Business Machines Corporation
    Inventors: Kevin Kok Chan, Jack Oon Chu, Khalid EzzEldin Ismail, Stephen Anthony Rishton, Katherine Lynn Saenger
  • Patent number: 6858502
    Abstract: A method and a layered heterostructure for forming p-channel field effect transistors is described incorporating a plurality of semiconductor layers on a semiconductor substrate, a composite channel structure of a first epitaxial Ge layer and a second compressively strained SiGe layer having a higher barrier or a deeper confining quantum well and having extremely high hole mobility. The invention overcomes the problem of a limited hole mobility for a p-channel device with only a single compressively strained SiGe channel layer.
    Type: Grant
    Filed: November 20, 2001
    Date of Patent: February 22, 2005
    Assignee: International Business Machines Corporation
    Inventors: Jack Oon Chu, Richard Hammond, Khalid EzzEldin Ismail, Steven John Koester, Patricia May Mooney, John A. Ott