Patents by Inventor Jack T. Kavalieros

Jack T. Kavalieros has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11145763
    Abstract: An embodiment includes a system comprising: a thin film transistor (TFT) comprising a source, a channel, a drain, and a gate; first, second, and third dielectric portions; wherein (a) a first vertical axis intersects the source, the channel, and the drain; (b) the first dielectric portion surrounds the source in a first plane; (c) the second dielectric portion surrounds the channel in a second plane; (d) the third dielectric surrounds the drain in a third plane; (e) a second vertical axis intersects the first, second, and third dielectric portions; (f) the source includes a first dopant, the first dielectric portion includes the first dopant, the second dielectric portion includes at least one of the first dopant and a second dopant, the drain includes the at least one of the first and second dopants, and the third dielectric portion includes the at least one of the first and second dopants.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: October 12, 2021
    Assignee: INTEL CORPORATION
    Inventors: Ravi Pillarisetty, Prashant Majhi, Seung Hoon Sung, Willy Rachmady, Gilbert Dewey, Abhishek A. Sharma, Brian S. Doyle, Jack T. Kavalieros
  • Patent number: 11138499
    Abstract: An apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip. The CIM circuit includes a mathematical computation circuit coupled to a memory array. The memory array includes an embedded dynamic random access memory (eDRAM) memory array. Another apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip. The CIM circuit includes a mathematical computation circuit coupled to a memory array. The mathematical computation circuit includes a switched capacitor circuit. The switched capacitor circuit includes a back-end-of-line (BEOL) capacitor coupled to a thin film transistor within the metal/dielectric layers of the semiconductor chip. Another apparatus is described. The apparatus includes a compute-in-memory (CIM) circuit for implementing a neural network disposed on a semiconductor chip.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: October 5, 2021
    Assignee: Intel Corporation
    Inventors: Abhishek Sharma, Jack T. Kavalieros, Ian A. Young, Sasikanth Manipatruni, Ram Krishnamurthy, Uygar Avci, Gregory K. Chen, Amrita Mathuriya, Raghavan Kumar, Phil Knag, Huseyin Ekin Sumbul, Nazila Haratipour, Van H. Le
  • Publication number: 20210296180
    Abstract: An apparatus is described. The apparatus includes a FINFET device having a channel. The channel is composed of a first semiconductor material that is epitaxially grown on a subfin structure beneath the channel. The subfin structure is composed of a second semiconductor material that is different than the first semiconductor material. The subfin structure is epitaxially grown on a substrate composed of a third semiconductor material that is different than the first and second semiconductor materials. The subfin structure has a doped region to substantially impede leakage currents between the channel and the substrate.
    Type: Application
    Filed: June 2, 2021
    Publication date: September 23, 2021
    Inventors: Gilbert DEWEY, Matthew V. METZ, Willy RACHMADY, Anand S. MURTHY, Chandra S. MOHAPATRA, Tahir GHANI, Sean T. MA, Jack T. KAVALIEROS
  • Publication number: 20210296506
    Abstract: Described herein are IC devices with non-planar SiGe transistors fabricated using silicon replacement. Silicon replacement as described herein refers to providing, over a support structure (e.g., a substrate, a wafer, a chip, or a die), a channel body for a non-planar transistor, where the channel body includes silicon, providing a cladding layer that includes germanium over at least a portion of the channel body, and annealing the channel body so that at least some of the germanium diffuses into the channel body. The channel body is a fin if the transistor is a FinFET transistor, and is a nanoribbon or a nanowire if the transistor is a nanoribbon-based transistor. Fabricating non-planar SiGe transistors using silicon replacement advantageously allows forming IC devices with both silicon and SiGe transistors on a single support structure.
    Type: Application
    Filed: March 20, 2020
    Publication date: September 23, 2021
    Applicant: Intel Corporation
    Inventors: Andy Chih-Hung Wei, Jack T. Kavalieros, Guillaume Bouche
  • Publication number: 20210288049
    Abstract: Techniques and mechanisms for operating transistors that are in a stacked configuration. In an embodiment, an integrated circuit (IC) device includes transistors arranged along a line of direction which is orthogonal to a surface of a semiconductor substrate. A first epitaxial structure and a second epitaxial structure are coupled, respectively, to a first channel structure of a first transistor and a second channel structure of a second transistor. The first epitaxial structure and the second epitaxial structure are at different respective levels relative to the surface of the semiconductor substrate. A dielectric material is disposed between the first epitaxial structure and the second epitaxial structure to facilitate electrical insulation of the channels from each other. In another embodiment, the stacked transistors are coupled to provide a complementary metal-oxide-semiconductor (CMOS) inverter circuit.
    Type: Application
    Filed: May 28, 2021
    Publication date: September 16, 2021
    Inventors: Ravi PILLARISETTY, Willy RACHMADY, Marko RADOSAVLJEVIC, Van H. LE, Jack T. KAVALIEROS
  • Publication number: 20210288108
    Abstract: Embodiments include a threshold switching selector. The threshold switching selector may include a threshold switching layer and a semiconductor layer between two electrodes. A memory cell may include the threshold switching selector coupled to a storage cell. The storage cell may be a PCRAM storage cell, a MRAM storage cell, or a RRAM storage cell. In addition, a RRAM device may include a RRAM storage cell, coupled to a threshold switching selector, where the threshold switching selector may include a threshold switching layer and a semiconductor layer, and the semiconductor layer of the threshold switching selector may be shared with the semiconductor layer of the RRAM storage cell.
    Type: Application
    Filed: September 23, 2016
    Publication date: September 16, 2021
    Inventors: ABHISHEK A. SHARMA, VAN H. LE, GILBERT DEWEY, RAFAEL RIOS, JACK T. KAVALIEROS, SHRIRAM SHIVARAMAN
  • Patent number: 11121030
    Abstract: Techniques are disclosed for forming transistors employing a carbon-based etch stop layer (ESL) for preserving source and drain (S/D) material during contact trench etch processing. As can be understood based on this disclosure, carbon-based layers can provide increased resistance for etch processing, such that employing a carbon-based ESL on S/D material can preserve that S/D material during contact trench etch processing. This is due to carbon-based layers being able to provide more robust (e.g., more selective) etch selectivity during contact trench etch processing than the S/D material it is preserving (e.g., Si, SiGe, Ge, group III-V semiconductor material) and other etch stop layers (e.g., insulator material-based etch stop layers). Employing a carbon-based ESL enables a given S/D region to protrude from shallow trench isolation (STI) material prior to contact metal deposition, thereby providing more surface area for making contact to the given S/D region, which improves transistor performance.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: September 14, 2021
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Benjamin Chu-Kung, Seung Hoon Sung, Jack T. Kavalieros, Tahir Ghani
  • Patent number: 11121073
    Abstract: An interconnect structure is disclosed. The interconnect structure includes a first metal interconnect in a bottom dielectric layer, a via that extends through a top dielectric layer, a metal plate, an intermediate dielectric layer, and an etch stop layer, and a metal in the via to extend through the top dielectric layer, the metal plate, the intermediate dielectric layer and the etch stop layer to the top surface of the first metal interconnect. The metal plate is coupled to an MIM capacitor that is parallel to the via. The second metal interconnect is on top of the metal in the via.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: September 14, 2021
    Assignee: Intel Corporation
    Inventors: Travis Lajoie, Abhishek Sharma, Juan Alzate-Vinasco, Chieh-Jen Ku, Shem Ogadhoh, Allen Gardiner, Blake Lin, Yih Wang, Pei-Hua Wang, Jack T. Kavalieros, Bernhard Sell, Tahir Ghani
  • Patent number: 11107890
    Abstract: An apparatus is described. The apparatus includes a FINFET device having a channel. The channel is composed of a first semiconductor material that is epitaxially grown on a subfin structure beneath the channel. The subfin structure is composed of a second semiconductor material that is different than the first semiconductor material. The subfin structure is epitaxially grown on a substrate composed of a third semiconductor material that is different than the first and second semiconductor materials. The subfin structure has a doped region to substantially impede leakage currents between the channel and the substrate.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: August 31, 2021
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Matthew V. Metz, Willy Rachmady, Anand S. Murthy, Chandra S. Mohapatra, Tahir Ghani, Sean T. Ma, Jack T. Kavalieros
  • Patent number: 11101270
    Abstract: Techniques and mechanisms for operating transistors that are in a stacked configuration. In an embodiment, an integrated circuit (IC) device includes transistors arranged along a line of direction which is orthogonal to a surface of a semiconductor substrate. A first epitaxial structure and a second epitaxial structure are coupled, respectively, to a first channel structure of a first transistor and a second channel structure of a second transistor. The first epitaxial structure and the second epitaxial structure are at different respective levels relative to the surface of the semiconductor substrate. A dielectric material is disposed between the first epitaxial structure and the second epitaxial structure to facilitate electrical insulation of the channels from each other. In another embodiment, the stacked transistors are coupled to provide a complementary metal-oxide-semiconductor (CMOS) inverter circuit.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: August 24, 2021
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Willy Rachmady, Marko Radosavljevic, Van H. Le, Jack T. Kavalieros
  • Patent number: 11101356
    Abstract: Integrated circuit transistor structures are disclosed that reduce n-type dopant diffusion, such as phosphorous or arsenic, from the source region and the drain region of a germanium n-MOS device into adjacent insulator regions during fabrication. The n-MOS transistor device may include at least 75% germanium by atomic percentage. In an example embodiment, a dopant-rich insulator cap is deposited adjacent to the source and/or drain regions, to provide dopant diffusion reduction. In some embodiments, the dopant-rich insulator cap is doped with an n-type impurity including Phosphorous in a concentration between 1 and 10% by atomic percentage. In some embodiments, the dopant-rich insulator cap may have a thickness in the range of 10 to 100 nanometers and a height in the range of 10 to 200 nanometers.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: August 24, 2021
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Cory C. Bomberger, Tahir Ghani, Jack T. Kavalieros, Benjamin Chu-Kung, Seung Hoon Sung, Siddharth Chouksey
  • Patent number: 11101350
    Abstract: Techniques are disclosed for forming germanium (Ge)-rich channel transistors including one or more dopant diffusion barrier elements. The introduction of one or more dopant diffusion elements into at least a portion of a given source/drain (S/D) region helps inhibit the undesired diffusion of dopant (e.g., B, P, or As) into the adjacent Ge-rich channel region. In some embodiments, the elements that may be included in a given S/D region to help prevent the undesired dopant diffusion include at least one of tin and relatively high silicon. Further, in some such embodiments, carbon may also be included to help prevent the undesired dopant diffusion. In some embodiments, the one or more dopant diffusion barrier elements may be included in an interfacial layer between a given S/D region and the Ge-rich channel region and/or throughout at least a majority of a given S/D region. Numerous embodiments, configurations, and variations will be apparent.
    Type: Grant
    Filed: May 13, 2020
    Date of Patent: August 24, 2021
    Assignee: Intel Corporation
    Inventors: Glenn A. Glass, Anand S. Murthy, Karthik Jambunathan, Benjamin Chu-Kung, Seung Hoon Sung, Jack T. Kavalieros, Tahir Ghani, Harold W. Kennel
  • Publication number: 20210257457
    Abstract: A nanowire device of the present description may be produced with the incorporation of at least one hardmask during the fabrication of at least one nanowire transistor in order to assist in protecting an uppermost channel nanowire from damage that may result from fabrication processes, such as those used in a replacement metal gate process and/or the nanowire release process. The use of at least one hardmask may result in a substantially damage free uppermost channel nanowire in a multi-stacked nanowire transistor, which may improve the uniformity of the channel nanowires and the reliability of the overall multi-stacked nanowire transistor.
    Type: Application
    Filed: April 12, 2021
    Publication date: August 19, 2021
    Inventors: Seung Hoon Sung, Seiyon Kim, Kelin J. Kuhn, Willy Rachmady, Jack T. Kavalieros
  • Patent number: 11088204
    Abstract: A memory device includes a first electrode, a non-volatile memory element having a first terminal and a second terminal, where the first terminal is coupled to the first electrode. The memory device further includes a selector having a first terminal, a second terminal and a sidewall between the first and second terminals, where the second terminal of the selector is coupled to the first terminal of the non-volatile memory element. A second electrode is coupled to the second terminal of the selector and a third electrode laterally adjacent to the sidewall of the selector.
    Type: Grant
    Filed: September 30, 2017
    Date of Patent: August 10, 2021
    Assignee: Intel Corporation
    Inventors: Ravi Pillarisetty, Abhishek A. Sharma, Van H. Le, Jack T. Kavalieros, Willy Rachmady
  • Patent number: 11081570
    Abstract: Integrated circuit transistor structures are disclosed that include a gate structure that is lattice matched to the underlying channel. In particular, the gate dielectric is lattice matched to the underlying semiconductor channel material, and in some embodiments, so is the gate electrode. In an example embodiment, single crystal semiconductor channel material and single crystal gate dielectric material that are sufficiently lattice matched to each other are epitaxially deposited. In some cases, the gate electrode material may also be a single crystal material that is lattice matched to the semiconductor channel material, thereby allowing the gate electrode to impart strain on the channel via the also lattice matched gate dielectric. A gate dielectric material that is lattice matched to the channel material can be used to reduce interface trap density (Dit). The techniques can be used in both planar and non-planar (e.g., finFET and nanowire) metal oxide semiconductor (MOS) transistor architectures.
    Type: Grant
    Filed: September 28, 2016
    Date of Patent: August 3, 2021
    Assignee: Intel Corporation
    Inventors: Karthik Jambunathan, Glenn A. Glass, Anand S. Murthy, Jack T. Kavalieros, Seung Hoon Sung, Benjamin Chu-Kung, Tahir Ghani
  • Publication number: 20210210620
    Abstract: The present description relates to the fabrication of microelectronic transistor source and/or drain regions using angled etching. In one embodiment, a microelectronic transistor may be formed by using an angled etch to reduce the number masking steps required to form p-type doped regions and n-type doped regions. In further embodiments, angled etching may be used to form asymmetric spacers on opposing sides of a transistor gate, wherein the asymmetric spacers may result in asymmetric source/drain configurations.
    Type: Application
    Filed: March 30, 2016
    Publication date: July 8, 2021
    Applicant: Intel Corporation
    Inventors: Seung Hoon Sung, Robert B. Turkot, Marko Radosavljevic, Han Wui Then, Willy Rachmady, Sansaptak Dasgupta, Jack T. Kavalieros
  • Patent number: 11049773
    Abstract: A transistor device comprising a channel disposed on a substrate between a source and a drain, a gate electrode disposed on the channel, wherein the channel comprises a channel material that is separated from a body of the same material on a substrate. A method comprising forming a trench in a dielectric layer on an integrated circuit substrate, the trench comprising dimensions for a transistor body including a width; depositing a spacer layer in a portion of the trench, the spacer layer narrowing the width of the trench; forming a channel material in the trench through the spacer layer; recessing the dielectric layer to define a first portion of the channel material exposed and a second portion of the channel material in the trench; and separating the first portion of the channel material from the second portion of the channel material.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: June 29, 2021
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Matthew V. Metz, Sean T. Ma, Cheng-Ying Huang, Tahir Ghani, Anand S. Murthy, Harold W. Kennel, Nicholas G. Minutillo, Jack T. Kavalieros, Willy Rachmady
  • Publication number: 20210193814
    Abstract: FETs including a gated oxide semiconductor spacer interfacing with a channel semiconductor. Transistors may incorporate a non-oxide channel semiconductor, and one or more oxide semiconductors disposed proximal to the transistor gate electrode and the source/drain semiconductor, or source/drain contact metal. In advantageous embodiments, the oxide semiconductor is to be gated by a voltage applied to the gate electrode (i.e., gate voltage) so as to switch the oxide semiconductor between insulating and semiconducting states in conjunction with gating the transistor's non-oxide channel semiconductor between on and off states.
    Type: Application
    Filed: March 4, 2016
    Publication date: June 24, 2021
    Applicant: Intel Corporation
    Inventors: Gilbert W. Dewey, Rafael Rios, Van H. Le, Jack T. Kavalieros
  • Patent number: 11031503
    Abstract: Embodiments of the present disclosure describe a non-planar gate thin film transistor. An integrated circuit may include a plurality of layers formed on a substrate, and the plurality of layers may include a first one of a source or drain, an inter-layer dielectric (ILD) formed on the first one of the source or drain, and a second one of the source or drain formed on the ILD. A semiconductive layer may be formed on a sidewall of the plurality of layers. A gate dielectric layer formed on the semiconductive layer, and a gate may be in contact with the gate dielectric layer.
    Type: Grant
    Filed: September 27, 2016
    Date of Patent: June 8, 2021
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Van H. Le, Gilbert Dewey, Rafael Rios, Jack T. Kavalieros, Yih Wang, Shriram Shivaraman
  • Patent number: 11031499
    Abstract: An apparatus including a transistor device including a channel disposed on a substrate between a source and a drain, a gate electrode disposed on the channel, wherein the channel includes a length dimension between source and drain that is greater than a length dimension of the gate electrode such that there is a passivated underlap between an edge of the gate electrode and an edge of the channel relative to each of the source and the drain. A method including forming a channel of a transistor device on a substrate; forming first and second passivation layers on a surface of substrate on opposite sides of the channel; forming a gate stack on the channel between first and second passivation layers; and forming a source on the substrate between the channel and the first passivation layer and a drain on the substrate between the channel and the second passivation layer.
    Type: Grant
    Filed: July 2, 2016
    Date of Patent: June 8, 2021
    Assignee: Intel Corporation
    Inventors: Willy Rachmady, Van H. Le, Matthew V. Metz, Benjamin Chu-Kung, Ashish Agrawal, Jack T. Kavalieros