Patents by Inventor Jacob George

Jacob George has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10070258
    Abstract: Fiber optic array cables and related systems and methods to determine and/or track locations of objects are disclosed. The fiber optic array cables can be employed in an optical-fiber-based communication system, including a centralized optical-fiber based communication system. In one embodiment, the fiber optic array cable is configured to carry optical RF or radio-over-fiber (RoF) signals to establish communications with objects. The fiber optic array cable includes multiple reference units along the length of the cable. The reference units can be configured to convert received optical RF signals into electrical RF signals to establish RF communications with objects capable of receiving electrical RF signals. The reference units are also configured to convert received electrical RF signals from the objects into optical RF signals, which are then used to determine the location of the object.
    Type: Grant
    Filed: February 6, 2017
    Date of Patent: September 4, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Jacob George, Michael Sauer, Dean Michael Thelen
  • Publication number: 20180198498
    Abstract: Components, systems, and methods for reducing location-dependent destructive interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration are disclosed. Interference is defined as issues with received MIMO communications signals that can cause a MIMO algorithm to not be able to solve a channel matrix for MIMO communications signals received by MIMO receivers in client devices. These issues may be caused by lack of separation (i.e., phase, amplitude) in the received MIMO communications signals. Thus, to provide amplitude separation of received MIMO communications signals, multiple MIMO transmitters are each configured to employ multiple transmitter antennas, which are each configured to transmit in different polarization states. In certain embodiments, one of the MIMO communications signals is amplitude adjusted in one of the polarization states to provide amplitude separation between received MIMO communications signals.
    Type: Application
    Filed: March 7, 2018
    Publication date: July 12, 2018
    Inventors: Jacob George, Anthony Ny'Oma, Hejie Yang
  • Patent number: 9994569
    Abstract: Aromatic diimide chromophores and methods for using the chromophores for the detection of volatile organic compounds are described. The chromophores are able to reversibly change colors in the presence or absence of volatile organic compounds.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: June 12, 2018
    Assignee: Jawaharlal Nehru Centre for Advanced Scientific Research
    Inventors: Subi Jacob George, Mohit Kumar
  • Patent number: 9979444
    Abstract: Hybrid intra-cell/inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs), and related components, systems, and methods. The MIMO DASs are capable of supporting distributed MIMO communications with client devices. To provide enhanced MIMO coverage areas, hybrid intra-cell/inter-cell remote unit antenna bonding is employed. For example, if a client device has acceptable MIMO communications signal quality with MIMO antennas within a single remote unit, intra-cell bonding of the MIMO antennas can be employed to provide MIMO coverage for MIMO communications, which may avoid power imbalance issues that would result with inter-cell bonded MIMO antennas. However, if a client device has acceptable MIMO communications signal quality with MIMO antennas in a separate, neighboring remote unit(s), inter-cell bonding of the MIMO antennas can be employed to provide MIMO coverage for MIMO communications.
    Type: Grant
    Filed: April 12, 2017
    Date of Patent: May 22, 2018
    Assignee: Corning Optical Communications LLC
    Inventors: Jacob George, Anthony Ng'oma, Rakesh Sambaraju
  • Patent number: 9937538
    Abstract: Sorbent polymers which are selective to taking up hydrocarbons are provided for separating hydrocarbons from fluids and taking up hydrocarbons from off of and intermixed with solid materials. The hydrocarbons may at least partially be expressed out of and recovered from the polymer by squeezing. The polymers may be re-used for picking up additional hydrocarbons. Methods for producing and using the polymers are also provided.
    Type: Grant
    Filed: February 17, 2016
    Date of Patent: April 10, 2018
    Assignee: Jawaharlal Nehru Centre for Advanced Scientific Research
    Inventors: Subi Jacob George, Kotagiri Venkata Rao
  • Patent number: 9929786
    Abstract: Components, systems, and methods for reducing location-dependent destructive interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration are disclosed. Interference is defined as issues with received MIMO communications signals that can cause a MIMO algorithm to not be able to solve a channel matrix for MIMO communications signals received by MIMO receivers in client devices. These issues may be caused by lack of separation (i.e., phase, amplitude) in the received MIMO communications signals. Thus, to provide amplitude separation of received MIMO communications signals, multiple MIMO transmitters are each configured to employ multiple transmitter antennas, which are each configured to transmit in different polarization states. In certain embodiments, one of the MIMO communications signals is amplitude adjusted in one of the polarization states to provide amplitude separation between received MIMO communications signals.
    Type: Grant
    Filed: December 8, 2016
    Date of Patent: March 27, 2018
    Assignee: Corning Incorporated
    Inventors: Jacob George, Anthony Ng'Oma, Hejie Yang
  • Publication number: 20180065275
    Abstract: Systems for and methods of drying a wet skin of a wet skinned ceramic ware are disclosed. The wet skinned ceramic ware includes a dry interior web with an outer surface. The wet skin is disposed on the outer surface of the dry interior web. The method includes generating an airstream and then directing the airstream through a first end of the wet-skinned ceramic ware only through an annular portion of the interior web that is adjacent the outer surface of the interior web. The flow of the airstream through the annular portion of the interior web causes moisture in the wet skin to migrate inwardly toward the interior web. The moisture is removed from the annular portion of the interior web when the airstream exits a second end of the ceramic ware, thereby drying the skin from the inside out of the wet-skinned ceramic ware.
    Type: Application
    Filed: March 21, 2016
    Publication date: March 8, 2018
    Inventors: Jacob George, Amit Halder, Madison Minjoo Lee
  • Publication number: 20180062743
    Abstract: Extremely High Frequency (EHF) distributed antenna systems and related components and methods are disclosed. In one embodiment, a base unit for distributing EHF modulated data signals to a RAU(s) is provided. The base unit includes a downlink data source input configured to receive downlink electrical data signal(s) from a data source. The base unit also includes an E-O converter configured to convert downlink electrical data signal(s) into downlink optical data signal(s). The base unit also includes an oscillator configured to generate an electrical carrier signal at a center frequency in the EHF band. The base unit also includes a modulator configured to combine the downlink optical data signal(s) with the electrical carrier signal to form downlink modulated optical signal(s) comprising a downlink optical data signal(s) modulated at the center frequency of the electrical carrier signal. The modulator is further configured to send the downlink modulated optical signal to the RAU(s).
    Type: Application
    Filed: October 23, 2017
    Publication date: March 1, 2018
    Inventors: Jacob George, Anthony Ng'Oma, Alranzo Boh Ruffin, Michael Sauer
  • Publication number: 20180062716
    Abstract: Components, systems, and methods for reducing location-based interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration are disclosed. Interference is defined as issues with received MIMO communications signals that can cause a MIMO algorithm to not be able to solve a channel matrix for MIMO communications signals received by MIMO receivers in client devices. These issues may be caused by lack of spatial (i.e., phase) separation in the received MIMO communications signals. Thus, to provide phase separation of received MIMO communication signals, multiple MIMO transmitters are each configured to employ multiple transmitter antennas, which are each configured to transmit in different polarization states. In certain embodiments, one of the MIMO communications signals is phase shifted in one of the polarization states to provide phase separation between received MIMO communication signals.
    Type: Application
    Filed: October 25, 2017
    Publication date: March 1, 2018
    Inventors: Jacob George, Anthony Ng'Oma, Hejie Yang
  • Publication number: 20180001517
    Abstract: A method and system to dry crack-free and high strength skin including an inorganic binder of an average particle size (D50) in a range between 10 nm and 700 nm on a porous ceramic body. The method includes supporting the honeycomb body on an end face such that axial channels and outer periphery are substantially vertical. A gas is flowed past the honeycomb body substantially parallel to the axial channel direction, substantially equally around the outer periphery of the skin, to uniformly dry the skin to form a partially dried skin under mild conditions. Then the partially dried skin may be dried more severely resulting in rapidly dried crack-free and high strength skin.
    Type: Application
    Filed: September 19, 2017
    Publication date: January 4, 2018
    Inventors: Ravindra Kumar Akarapu, Derik Alan Bruins, Jacob George, Amit halder, Charlotte Diane Milia, Kaitlin Smith Olmstead
  • Patent number: 9833927
    Abstract: Disclosed is a ceramic honeycomb structure comprising a honeycomb body and a multilayered outer layer formed of a thick core layer applied and rapidly dried and a thin clad layer dried more gently to form a crack free dual skin layer. The core layer may have properties that are closer to those of the ceramic honeycomb body in service than the clad layer that may provide a tough outer shell to withstand handling and assembly.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: December 5, 2017
    Assignee: Corning Incorporated
    Inventors: Thomas Richard Chapman, Jacob George, Ralph Henry Hagg, Amit Halder, Huthavahana Kuchibhotla Sarma
  • Publication number: 20170334091
    Abstract: Systems and methods for drying skinned ceramic wares (10) using recycled microwave radiation are disclosed. The method includes irradiating wet skinned ceramic wares (10W) in a first applicator section (124W) with microwave radiation (212), wherein said irradiating (212) gives rise to reflected microwave radiation (212R). The method also includes capturing a portion of the reflected microwave radiation (212R) and irradiating a plurality of semi-dry skinned ceramic wares (105) in a second applicator section (124S) with the reflected microwave radiation (212R). Systems for carrying out the method are also disclosed.
    Type: Application
    Filed: October 27, 2015
    Publication date: November 23, 2017
    Inventors: James Anthony Feldman, Jacob George, Amit Halder, Nadezhda Pavlovna Paramonova
  • Patent number: 9813127
    Abstract: Components, systems, and methods for reducing location-based interference in distributed antenna systems operating in multiple-input, multiple-output (MIMO) configuration are disclosed. Interference is defined as issues with received MIMO communications signals that can cause a MIMO algorithm to not be able to solve a channel matrix for MIMO communications signals received by MIMO receivers in client devices. These issues may be caused by lack of spatial (i.e., phase) separation in the received MIMO communications signals. Thus, to provide phase separation of received MIMO communication signals, multiple MIMO transmitters are each configured to employ multiple transmitter antennas, which are each configured to transmit in different polarization states. In certain embodiments, one of the MIMO communications signals is phase shifted in one of the polarization states to provide phase separation between received MIMO communication signals.
    Type: Grant
    Filed: January 18, 2016
    Date of Patent: November 7, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Jacob George, Anthony Ng'Oma, Hejie Yang
  • Patent number: 9800339
    Abstract: Extremely High Frequency (EHF) distributed antenna systems and related components and methods are disclosed. In one embodiment, a base unit for distributing EHF modulated data signals to a RAU(s) is provided. The base unit includes a downlink data source input configured to receive downlink electrical data signal(s) from a data source. The base unit also includes an E-O converter configured to convert downlink electrical data signal(s) into downlink optical data signal(s). The base unit also includes an oscillator configured to generate an electrical carrier signal at a center frequency in the EHF band. The base unit also includes a modulator configured to combine the downlink optical data signal(s) with the electrical carrier signal to form downlink modulated optical signal(s) comprising a downlink optical data signal(s) modulated at the center frequency of the electrical carrier signal. The modulator is further configured to send the downlink modulated optical signal to the RAU(s).
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: October 24, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Jacob George, Anthony Ng'Oma, Alranzo Boh Ruffin, Michael Sauer
  • Patent number: 9789633
    Abstract: A method and system to dry crack-free and high strength skin including an inorganic binder of an average particle size (D50) in a range between 10 nm and 700 nm on a porous ceramic body. The method includes supporting the honeycomb body on an end face such that axial channels and outer periphery are substantially vertical. A gas is flowed past the honeycomb body substantially parallel to the axial channel direction, substantially equally around the outer periphery of the skin, to uniformly dry the skin to form a partially dried skin under mild conditions. Then the partially dried skin may be dried more severely resulting in rapidly dried crack-free and high strength skin.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: October 17, 2017
    Assignee: Corning Incorporated
    Inventors: Ravindra Kumar Akarapu, Derik Alan Bruins, Jacob George, Amit Halder, Charlotte Diane Milia, Kaitlin Smith Olmstead
  • Patent number: 9729238
    Abstract: A switched wireless system is used to increase the range of peer-to-peer communications. The optically-switched fiber optic communication system includes a head-end unit (HEU) having a switch bank. Cables couple the HEU to one or more remote access points in different coverage areas. The switch bank in the HEU provides a link between the remote access points in the different coverage areas such that devices in the different cellular coverage areas communicate with each other, such as through videoconferencing. By using the switched communication system, the range and coverage of communication between devices may be extended such that devices in different coverage areas and devices using different communication protocols can communicate.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: August 8, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Jacob George, Michael Sauer, Dean Michael Thelen
  • Publication number: 20170222695
    Abstract: Hybrid intra-cell/inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs), and related components, systems, and methods. The MIMO DASs are capable of supporting distributed MIMO communications with client devices. To provide enhanced MIMO coverage areas, hybrid intra-cell/inter-cell remote unit antenna bonding is employed. For example, if a client device has acceptable MIMO communications signal quality with MIMO antennas within a single remote unit, intra-cell bonding of the MIMO antennas can be employed to provide MIMO coverage for MIMO communications, which may avoid power imbalance issues that would result with inter-cell bonded MIMO antennas. However, if a client device has acceptable MIMO communications signal quality with MIMO antennas in a separate, neighboring remote unit(s), inter-cell bonding of the MIMO antennas can be employed to provide MIMO coverage for MIMO communications.
    Type: Application
    Filed: April 12, 2017
    Publication date: August 3, 2017
    Inventors: Jacob George, Anthony Ng'oma, Rakesh Sambaraju
  • Publication number: 20170163341
    Abstract: Extremely High Frequency (EHF) distributed antenna systems and related components and methods are disclosed. In one embodiment, a base unit for distributing EHF modulated data signals to a RAU(s) is provided. The base unit includes a downlink data source input configured to receive downlink electrical data signal(s) from a data source. The base unit also includes an E-O converter configured to convert downlink electrical data signal(s) into downlink optical data signal(s). The base unit also includes an oscillator configured to generate an electrical carrier signal at a center frequency in the EHF band. The base unit also includes a modulator configured to combine the downlink optical data signal(s) with the electrical carrier signal to form downlink modulated optical signal(s) comprising a downlink optical data signal(s) modulated at the center frequency of the electrical carrier signal. The modulator is further configured to send the downlink modulated optical signal to the RAU(s).
    Type: Application
    Filed: February 23, 2017
    Publication date: June 8, 2017
    Inventors: Jacob George, Anthony Ng'Oma, Alranzo Boh Ruffin, Michael Sauer
  • Publication number: 20170150316
    Abstract: Fiber optic array cables and related systems and methods to determine and/or track locations of objects are disclosed. The fiber optic array cables can be employed in an optical-fiber-based communication system, including a centralized optical-fiber based communication system. In one embodiment, the fiber optic array cable is configured to carry optical RF or radio-over-fiber (RoF) signals to establish communications with objects. The fiber optic array cable includes multiple reference units along the length of the cable. The reference units can be configured to convert received optical RF signals into electrical RF signals to establish RF communications with objects capable of receiving electrical RF signals. The reference units are also configured to convert received electrical RF signals from the objects into optical RF signals, which are then used to determine the location of the object.
    Type: Application
    Filed: February 6, 2017
    Publication date: May 25, 2017
    Inventors: Jacob George, Michael Sauer, Dean Michael Thelen
  • Patent number: 9654189
    Abstract: Hybrid intra-cell/inter-cell remote unit antenna bonding in multiple-input, multiple-output (MIMO) distributed antenna systems (DASs), and related components, systems, and methods. The MIMO DASs are capable of supporting distributed MIMO communications with client devices. To provide enhanced MIMO coverage areas, hybrid intra-cell/inter-cell remote unit antenna bonding is employed. For example, if a client device has acceptable MIMO communications signal quality with MIMO antennas within a single remote unit, intra-cell bonding of the MIMO antennas can be employed to provide MIMO coverage for MIMO communications, which may avoid power imbalance issues that would result with inter-cell bonded MIMO antennas. However, if a client device has acceptable MIMO communications signal quality with MIMO antennas in a separate, neighboring remote unit(s), inter-cell bonding of the MIMO antennas can be employed to provide MIMO coverage for MIMO communications.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: May 16, 2017
    Assignee: Corning Optical Communications LLC
    Inventors: Jacob George, Anthony Ng'Oma, Rakesh Sambaraju