Patents by Inventor Jacques Faguet

Jacques Faguet has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8163087
    Abstract: A plasma enhanced atomic layer deposition (PEALD) method and system, the system including a process chamber and a substrate holder provided within the processing chamber and configured to support a substrate on which a predetermined film will be formed. A first process material supply system is configured to supply a first process material to the process chamber, and a second process material supply system configured to supply a second process material to the process chamber in order to provide a reduction reaction with the first process material to form the predetermined film on the substrate. Also included is a power source configured to couple electromagnetic power to the process chamber to generate a plasma within the process chamber to facilitate the reduction reaction, and a chamber component exposed to the plasma and made from a film compatible material that is compatible with the predetermined film deposited on the substrate.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: April 24, 2012
    Assignee: Tokyo Electron Limited
    Inventors: Jacques Faguet, Frank M. Cerio, Jr., Tsukasa Matsuda, Kaoru Yamamoto
  • Publication number: 20110305831
    Abstract: A method of depositing a thin film on a substrate in a deposition system is described. The method includes disposing a gas heating device comprising a plurality of heating element zones in a deposition system, and independently controlling a temperature of each of the plurality of heating element zones, wherein each of the plurality of heating element zones having one or more resistive heating elements. Additionally, the method includes providing a substrate on a substrate holder in the deposition system, wherein the substrate holder has one or more temperature control zones. The method further includes providing a film forming composition to the gas heating device coupled to the deposition system, pyrolyzing one or more constituents of the film forming composition using the gas heating device, and introducing the film forming composition to the substrate in the deposition system to deposit a thin film on the substrate.
    Type: Application
    Filed: June 11, 2010
    Publication date: December 15, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Eric M. LEE, Jacques FAGUET, Eric J. STRANG
  • Publication number: 20110303145
    Abstract: A gas heating device and a processing system for use therein are described for depositing a thin film on a substrate using a vapor deposition process. The gas heating device includes a heating element array having a plurality of heating element zones configured to receive a flow of a film forming composition across or through said plurality of heating element zones in order to cause pyrolysis of one or more constituents of the film forming composition when heated. Additionally, the processing system may include a substrate holder configured to support a substrate. The substrate holder may include a backside gas supply system configured to supply a heat transfer gas to a backside of said substrate, wherein the backside gas supply system is configured to independently supply the heat transfer gas to multiple zones at the backside of the substrate.
    Type: Application
    Filed: June 11, 2010
    Publication date: December 15, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Eric M. LEE, Jacques FAGUET, Eric J. STRANG
  • Publication number: 20110244128
    Abstract: A filament assisted chemical vapor deposition (FACVD) system. The FACVD system includes a gas distribution assembly, heater filament assembly, and a flow plate that is disposed between the gas distribution assembly and the heater filament assembly. The heater filament assembly and the flow plate have a corresponding extent across a dimension of the reactor and are separated by different distances across that extent.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jozef Brcka, Jacques Faguet
  • Publication number: 20110233430
    Abstract: A process module for treating a dielectric film and, in particular, a process module for exposing, for example, a low dielectric constant (low-k) dielectric film to ultraviolet (UV) radiation is described. The process module includes a process chamber, a substrate holder coupled to the process chamber and configured to support a substrate, and a radiation source coupled to the process chamber and configured to expose the dielectric film to electromagnetic (EM) radiation. The radiation source includes a UV source, wherein the UV source has a UV lamp, and a reflector for directing reflected UV radiation from the UV lamp to the substrate. The reflector has a dichroic reflector, and a non-absorbing reflector disposed between the UV lamp and the substrate, and configured to reflect UV radiation from the UV lamp towards the dichroic reflector, wherein the non-absorbing reflector substantially prevents direct UV radiation from the UV lamp to the substrate.
    Type: Application
    Filed: March 25, 2011
    Publication date: September 29, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Hongyu YUE, Junjun LIU, Jacques FAGUET, Dorel I. TOMA
  • Patent number: 7959985
    Abstract: A method for forming a modified TaC or TaCN film that may be utilized as a barrier film for Cu metallization. The method includes disposing a substrate in a process chamber of a plasma enhanced atomic layer deposition (PEALD) system configured to perform a PEALD process, depositing a TaC or TaCN film on the substrate using the PEALD process, and modifying the deposited TaC or TaCN film by exposing the deposited TaC or TaCN film to plasma excited hydrogen or atomic hydrogen or a combination thereof in order to remove carbon from at least the plasma exposed portion of the deposited TaCN film. The method further includes forming a metal film on the modified TaCN film, where the modified TaCN film provides stronger adhesion to the metal film than the deposited TaCN film. According to one embodiment, a TaCN film is deposited from alternating exposures of TAIMATA and plasma excited hydrogen.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: June 14, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Tadahiro Ishizaka, Tsukasa Matsuda, Masamichi Hara, Jacques Faguet, Yasushi Mizusawa
  • Publication number: 20110135842
    Abstract: A method and system for plasma-assisted thin film vapor deposition on a substrate is described. The system includes a process chamber including a first process space having a first volume, a substrate stage coupled to the process chamber and configured to support a substrate and expose the substrate to the first process space, a plasma generation system coupled to the process chamber and configured to generate plasma in at least a portion of the first process space, and a vacuum pumping system coupled to the process chamber and configured to evacuate at least a portion of the first process space. The system further includes a process volume adjustment mechanism coupled to the process chamber and configured to create a second process space that includes at least a part of the first process space and that has a second volume less than the first volume, the substrate being exposed to the second process space.
    Type: Application
    Filed: February 10, 2011
    Publication date: June 9, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jacques FAGUET, Masahide Iwasaki, Toshihisa Nozawa
  • Publication number: 20110126762
    Abstract: A system for depositing a thin film on a substrate using a vapor deposition process is described. The deposition system includes a process chamber having a vacuum pumping system configured to evacuate the process chamber, a substrate holder coupled to the process chamber and configured to support the substrate, a gas distribution system coupled to the process chamber and configured to introduce a film forming composition to a process space in the vicinity of a surface of the substrate, a non-ionizing heat source separate from the substrate holder that is configured to receive a flow of the film forming composition and to cause thermal fragmentation of one or more constituents of the film forming composition when heated, and one or more power sources coupled to the heating element array and configured to provide an electrical signal to the at least one heating element zone.
    Type: Application
    Filed: February 10, 2011
    Publication date: June 2, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Jacques Faguet, Eric M. Lee
  • Publication number: 20110061595
    Abstract: A gas heating device that may be used in a system for depositing a thin film on a substrate using a vapor deposition process is described. The gas heating device may be configured for heating one or more constituents of a film forming composition. The gas heating device comprises one or more resistive heating elements. Additionally, the gas heating device comprises a mounting structure configured to support at least one of the one or more resistive heating elements. Furthermore, the gas heating device comprises a static mounting device coupled to the mounting structure and configured to fixedly couple the at least one of the one or more resistive heating elements to the mounting structure, and a dynamic mounting device coupled to the mounting structure and configured to automatically compensate for changes in a length of the at least one of the one or more resistive heating elements.
    Type: Application
    Filed: September 14, 2009
    Publication date: March 17, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Ronald NASMAN, Jacques FAGUET
  • Patent number: 7901545
    Abstract: An iPVD system is programmed to deposit uniform material, such as barrier material, into high aspect ratio nano-size features on semiconductor substrates using a process which enhances the sidewall coverage compared to the field and bottom coverage(s) while minimizing or eliminating overhang within a vacuum chamber. The iPVD system is operated at low target power and high pressure >50 mT to sputter material from the target. RF energy is coupled into the chamber to form a high density plasma. A small RF bias (less than a few volts) can be applied to aid in enhancing the coverage, especially at the bottom.
    Type: Grant
    Filed: March 26, 2004
    Date of Patent: March 8, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Frank M. Cerio, Jr., Jacques Faguet, Bruce D. Gittleman, Rodney L. Robison
  • Patent number: 7897217
    Abstract: A method, computer readable medium, and system for vapor deposition on a substrate that introduce a gaseous film precursor to a process space, increase the volume of the process space from a first size to a second size to form an enlarged process space, introduce a reduction gas to the enlarged process space, and form a reduction plasma from the reduction gas. The system for vapor deposition includes a process chamber including a first process space and further including a second process space that includes the first process space and that has a second volume that exceeds the first volume. The first process space is configured for atomic layer deposition, and the second process space is configured for plasma reduction of a layer deposited in the first process space.
    Type: Grant
    Filed: November 18, 2005
    Date of Patent: March 1, 2011
    Assignee: Tokyo Electron Limited
    Inventor: Jacques Faguet
  • Publication number: 20100247803
    Abstract: A chemical vapor deposition (CVD) method for depositing a thin film on a surface of a substrate is described. The CVD method comprises disposing a substrate on a substrate holder in a process chamber, and introducing a process gas to the process chamber, wherein the process gas comprises a chemical precursor. The process gas is exposed to a non-ionizing heat source separate from the substrate holder to cause decomposition of the chemical precursor. A thin film is deposited upon the substrate.
    Type: Application
    Filed: March 23, 2010
    Publication date: September 30, 2010
    Applicants: TOKYO ELECTRON LIMITED, AIR PRODUCTS AND CHEMICALS, INC.
    Inventors: Eric M. LEE, Raymond Nicholas VRTIS, Mark Leonard O'NEILL, Patrick Timothy HURLEY, Jacques FAGUET, Takashi MATSUMOTO, Osayuki AKIYAMA
  • Patent number: 7771790
    Abstract: A method and system for fabricating nano-scale structures, such as channels (i.e., nano-channels) or vias (i.e., nano-vias). An open nano-structure, is formed in a substrate. Thereafter, a conformal material film may be deposited within and over the nano-structure using an optional first deposition process condition, and then the open nano-structure is closed off to form a closed nano-scale structure using a second deposition process condition, including one or more process steps.
    Type: Grant
    Filed: August 30, 2006
    Date of Patent: August 10, 2010
    Assignee: Tokyo Electron Limited
    Inventor: Jacques Faguet
  • Patent number: 7744735
    Abstract: An iPVD apparatus (20) is programmed to deposit material (10) onto semiconductor substrates (21) by cycling between deposition and etch modes within a vacuum chamber (30). Static magnetic fields are kept to a minimum during at least the etch modes, at least less than 150 Gauss, typically less than 50 Gauss, and preferably in the range of 0-10 Gauss. Static magnetic fields during deposition modes may be more than 150 Gauss, in the range of 0-50 Gauss, or preferably 20-30 Gauss, and may be the same as during etch modes or switched between a higher level during deposition modes and a lower level, including zero, during etch modes. Such switching may be by switching electromagnet current or by moving permanent magnets, by translation or rotation. Static magnetic fields are kept to a minimum during at least the etch modes, at least less than 150 Gauss, typically less than 50 Gauss, and preferably in the range of 1-10 Gauss. The modes may operate at different power and pressure parameters.
    Type: Grant
    Filed: March 5, 2004
    Date of Patent: June 29, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Rodney Lee Robison, Jacques Faguet, Bruce Gittleman, Tugrul Yasar, Frank Cerio, Jozef Brcka
  • Patent number: 7727912
    Abstract: A method light enhanced atomic layer deposition for forming a film on a substrate. The method includes disposing the substrate in a process chamber of a light enhanced atomic layer deposition (LEALD) system configured to perform a LEALD process; and depositing a film on the substrate using the LEALD process, where the depositing includes (a) exposing the substrate to a first process material, (b) exposing the substrate to a second process material containing a reducing agent and irradiating the substrate with a first light radiation having either no or at least partial temporal overlap with the exposing of the substrate to the second process material, (c) repeating steps (a) and (b) until the desired film has been deposited. According to one embodiment of the invention, the deposited film can be a TaCN film or a TaC film.
    Type: Grant
    Filed: March 20, 2006
    Date of Patent: June 1, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Tadahiro Ishizaka, Frank M. Cerio, Jr., Jacques Faguet
  • Publication number: 20100065759
    Abstract: A system for curing a low dielectric constant (low-k) dielectric film on a substrate is described, wherein the dielectric constant of the low-k dielectric film is less than a value of approximately 4. The system comprises one or more process modules configured for exposing the low-k dielectric film to electromagnetic (EM) radiation, such as infrared (IR) radiation and ultraviolet (UV) radiation.
    Type: Application
    Filed: September 16, 2008
    Publication date: March 18, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Junjun Liu, Jacques Faguet, Eric M. Lee, Dorel I. Toma, Hongyu Yue
  • Publication number: 20100065758
    Abstract: A system for curing a low dielectric constant (low-k) dielectric film on a substrate is described, wherein the dielectric constant of the low-k dielectric film is less than a value of approximately 4. The system comprises one or more process modules configured for exposing the low-k dielectric film to electromagnetic (EM) radiation, such as infrared (IR) radiation and ultraviolet (UV) radiation.
    Type: Application
    Filed: September 16, 2008
    Publication date: March 18, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Junjun Liu, Jacques Faguet, Eric M. Lee, Dorel I. Toma, Hongyu Yue
  • Publication number: 20100068897
    Abstract: A system for curing a low dielectric constant (low-k) dielectric film on a substrate is described, wherein the dielectric constant of the low-k dielectric film is less than a value of approximately 4. The system comprises one or more process modules configured for exposing the low-k dielectric film to electromagnetic (EM) radiation, such as infrared (IR) radiation and ultraviolet (UV) radiation.
    Type: Application
    Filed: September 16, 2008
    Publication date: March 18, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Junjun Liu, Jacques Faguet, Eric M. Lee, Dorel I. Toma, Hongyu Yue
  • Publication number: 20100067886
    Abstract: A system for curing a low dielectric constant (low-k) dielectric film on a substrate is described, wherein the dielectric constant of the low-k dielectric film is less than a value of approximately 4. The system comprises one or more process modules configured for exposing the low-k dielectric film to electromagnetic (EM) radiation, such as infrared (IR) radiation and ultraviolet (UV) radiation.
    Type: Application
    Filed: September 16, 2008
    Publication date: March 18, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Junjun Liu, Jacques Faguet, Eric M. Lee, Dorel I. Toma, Hongyu Yue
  • Publication number: 20090321247
    Abstract: A method is provided of operating a deposition system to deposit coating material into high aspect ratio nano-sized features on a patterned substrate that enhances sidewall coverage compared to field area and bottom surface coverage while minimizing or eliminating overhang. The method includes performing a process step with a gross field area deposition rate of about 25 to 70 nm/min and simultaneously etching the barrier layer to establish a net field area deposition rate of about 5 to 40 nm/min. The method may also include first performing a protective layer deposition step with a field area deposition rate of about 5 to 20 nm/min without etching the underlying surface then performing a surface modification step with gross deposition and simultaneous etching at a field modification net deposition rate of about ?10 to +40 nm/min.
    Type: Application
    Filed: September 8, 2009
    Publication date: December 31, 2009
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Frank M. Cerio, JR., Jacques Faguet, Bruce D. Gittleman, Rodney L. Robison