Patents by Inventor Jae-Man Yoon

Jae-Man Yoon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080067697
    Abstract: An integrated circuit device includes a substrate including a trench therein and a conductive plug wire pattern in the trench. The conductive plug wire pattern includes a recessed portion that exposes portions of opposing sidewalls of the trench, and an integral plug portion that protrudes from a surface of the recessed portion to provide an electrical connection to at least one other conductive wire pattern on a different level of metallization. A surface of the plug portion may protrude to a substantially same level as a surface of the substrate adjacent to and outside the trench, and the surface of the recessed portion may be below the surface of the substrate outside the trench. Related fabrication methods are also discussed.
    Type: Application
    Filed: February 16, 2007
    Publication date: March 20, 2008
    Inventors: Seong-Goo Kim, Yung-Gi Kim, Jae-Man Yoon, Hyeoung-Won Seo
  • Patent number: 7332386
    Abstract: A fin field effect transistor (FinFET) includes a substrate, a fin, a gate electrode, a gate insulation layer, and source and drain regions in the fin. The fin is on and extends laterally along and vertically away from the substrate. The gate electrode covers sides and a top of a portion of the fin. The gate insulation layer is between the gate electrode and the fin. The source region and the drain region in the fin and adjacent to opposite sides of the gate electrode. The source region of the fin has a different width than the drain region of the fin.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: February 19, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chul Lee, Min-Sang Kim, Dong-gun Park, Choong-ho Lee, Chang-woo Oh, Jae-man Yoon, Dong-won Kim, Jeong-dong Choe, Ming Li, Hye-jin Cho
  • Patent number: 7323375
    Abstract: Methods of forming field effect transistors (FETs) having fin-shaped active regions include patterning a semiconductor substrate to define a fin-shaped semiconductor active region therein, which is surrounded by a trench. At least an upper portion of the fin-shaped semiconductor active region is covered with a sacrificial layer. This sacrificial layer is selectively etched-back to define sacrificial spacers on sidewalls of the fin-shaped semiconductor active region. The electrically insulating region is formed on the sacrificial spacers. The sacrificial spacers are then removed by selectively etching the sacrificial spacers using the electrically insulating region as an etching mask. An insulated gate electrode is then formed on the sidewalls of the fin-shaped semiconductor active region.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: January 29, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Man Yoon, Dong-Gun Park, Choong-Ho Lee, Chul Lee
  • Patent number: 7317646
    Abstract: Provided is a memory device with a shared open bit line sense amplifier architecture. The memory device includes memory cell arrays, each memory cell array including bit lines, and a sense amplifier configured to couple to at least two bit lines a memory cell array and configured to couple to at least two bit lines of a different memory cell array.
    Type: Grant
    Filed: December 13, 2005
    Date of Patent: January 8, 2008
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Man Yoon, Choong-Ho Lee, Dong-Gun Park, Yeong-Taek Lee, Chul Lee
  • Publication number: 20080003753
    Abstract: A semiconductor device includes an isolation layer disposed in a semiconductor device to define an active region. A gate trench is disposed across the active region and extends to the isolation layer. An insulated gate electrode fills a portion of the gate trench and covers at least one sidewall of the active region. A portion of the gate electrode, that covers at least one sidewall of the active region, extends under a portion of the gate electrode that crosses the active region. An insulating pattern is disposed on the gate electrode.
    Type: Application
    Filed: December 8, 2006
    Publication date: January 3, 2008
    Inventors: Hyeoung-Won Seo, Jae-Man Yoon, Kang-Yoon Lee, Young-Woong Son
  • Publication number: 20070293011
    Abstract: A finFET device includes a semiconductor substrate having specific regions surrounded with a trench. The trench is filled with an insulating layer, and recess holes are formed within the specific regions such that channel fins are formed by raised portions of the semiconductor substrate on both sides of the recess holes. Gate lines are formed to overlie and extend across the channel fins. Source/drain regions are formed at both ends of the channel fins and connected by the channel fins. Other embodiments are described and claimed.
    Type: Application
    Filed: August 30, 2007
    Publication date: December 20, 2007
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyeoung-Won SEO, Woun-Suck YANG, Du-Heon SONG, Jae-Man YOON
  • Publication number: 20070290258
    Abstract: Field effect transistors include a substrate and a pillar that extends away from the substrate. The pillar includes a base adjacent the substrate, a top remote from the substrate, and a sidewall that extends between the base and the top. An insulated gate is provided on the sidewall. A first source/drain region is provided in the substrate beneath the pillar and adjacent the insulated gate. A second source/drain region that is heavily doped compared to the first source/drain region, is provided in the substrate beneath the pillar and remote from the insulated gate. The pillar may be an I-shaped pillar that is narrower between the base and the top compared to adjacent the base and the top, such that the sidewall includes a recessed portion between the base and the top.
    Type: Application
    Filed: September 11, 2006
    Publication date: December 20, 2007
    Inventors: Youngwoong Son, Jae-Man Yoon, Bong-soo Kim, Hyeoungwon Seo
  • Publication number: 20070284647
    Abstract: A semiconductor device may include a substrate having a cell active region. A cell gate electrode may be formed in the cell active region. A cell gate capping layer may be formed on the cell gate electrode. At least two cell epitaxial layers may be formed on the cell active region. One of the at least two cell epitaxial layers may extend to one end of the cell gate capping layer and another one of the at least two cell epitaxial layers may extend to an opposite end of the cell gate capping layer. Cell impurity regions may be disposed in the cell active region. The cell impurity regions may correspond to a respective one of the at least two cell epitaxial layers.
    Type: Application
    Filed: February 12, 2007
    Publication date: December 13, 2007
    Inventors: Hyeoung-Won Seo, Jae-Man Yoon, Kang-Yoon Lee, Bong-Soo Kim
  • Patent number: 7265011
    Abstract: A method of manufacturing a transistor according to some embodiments includes sequentially forming a dummy gate oxide layer and a dummy gate electrode on an active region of a semiconductor substrate, ion-implanting a first conductive impurity into source/drain regions to form first impurity regions, and ion-implanting the first conductive impurity to form second impurity regions that are overlapped by the first impurity regions. The method includes forming a pad polysilicon layer on the source/drain regions, sequentially removing the pad polysilicon layer and the dummy gate electrode from a gate region of the semiconductor substrate, annealing the semiconductor substrate, and ion-implanting a second conductive impurity to form a third impurity region in the gate region. The method includes removing the dummy gate oxide layer, forming a gate insulation layer, and forming a gate electrode on the gate region.
    Type: Grant
    Filed: July 22, 2004
    Date of Patent: September 4, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Man Yoon, Dong-gun Park, Makoto Yoshida, Gyo-Young Jin, Jeong-dong Choe, Sang-Yeon Han
  • Patent number: 7259430
    Abstract: A non-volatile memory device includes a fin body protruded from a semiconductor substrate. The fin body has first and second side surfaces opposite to each other. An inner dielectric layer pattern is formed on an upper surface, and the first and second side surfaces of the fin body. A floating gate electrode is formed on the inner dielectric layer pattern. The floating gate electrode has an uneven upper surface. An outer dielectric layer is formed on the floating gate electrode. A control gate electrode is formed on the outer dielectric layer.
    Type: Grant
    Filed: March 4, 2005
    Date of Patent: August 21, 2007
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Jae-Man Yoon, Tae-Yong Kim, Dong-Gun Park, Choong-Ho Lee
  • Publication number: 20070190766
    Abstract: Methods of manufacturing a semiconductor device include forming a matrix of active pillars including a channel part on a substrate. Channel dopant regions are formed in the channel parts of the active pillars. Gate electrodes are formed on an outer surface of the channel parts that surround the channel dopant regions. The matrix of active pillars may be arranged in rows in a first direction and in columns in a second direction crossing the first direction on the substrate.
    Type: Application
    Filed: December 14, 2006
    Publication date: August 16, 2007
    Inventors: Hyeoung-won Seo, Jae-man Yoon, Dong-gun Park, Seong-goo Kim
  • Publication number: 20070181925
    Abstract: A semiconductor device having a vertical channel capable of reducing the interface contact resistance between a gate electrode surrounding an active pillar and a word line connecting the gate electrode and a method of manufacturing the same is provided. The semiconductor device includes a plurality of active pillars extending in a direction perpendicular to a surface of a semiconductor substrate. A word line structure is formed on an outer periphery for connecting the active pillars disposed in the same row or column. Top and bottom source/drain regions are formed over and under the active pillars, respectively, in relation to the word line structure.
    Type: Application
    Filed: February 6, 2007
    Publication date: August 9, 2007
    Inventors: Jae-man Yoon, Bong-soo Kim, Hyeoung-won Seo, Kang-yoon Lee
  • Publication number: 20070152255
    Abstract: Channels of two transistors are vertically formed on portions of two opposite side surfaces of one active region, and gate electrodes are vertically formed on a device isolation layer contacting the channels of the active region. A common bit line contact plug is formed in the central portions of the active region, two storage node contact plugs are formed on both sides of the bit line contact plug, and an insulating spacer is formed on a side surface of the bit line contact plug. A word line, a bit line, and a capacitor are sequentially stacked on the semiconductor substrate, like a conventional semiconductor memory device.
    Type: Application
    Filed: November 16, 2006
    Publication date: July 5, 2007
    Inventors: Hyeoung-won Seo, Bong-soo Kim, Dong-gun Park, Kang-yoon Lee, Jae-man Yoon, Seong-goo Kim, Seung-bae Park
  • Publication number: 20070087499
    Abstract: In a semiconductor memory device having a vertical channel transistor a body of which is connected to a substrate and a method of fabricating the same, the semiconductor memory device includes a semiconductor substrate including a plurality of pillars arranged spaced apart from one another, and each of the pillars includes a body portion and a pair of pillar portions extending from the body portion and spaced apart from each other. A gate electrode is formed to surround each of the pillar portions. A bitline is disposed on the body portion to penetrate a region between a pair of the pillar portions of each of the first pillars arranged to extend in a first direction. A wordline is disposed over the bitline, arranged to extend in a second direction intersecting the first direction, and configured to contact the side surface of the gate electrode. A first doped region is formed in the upper surface of each of the pillar portions of the pillar.
    Type: Application
    Filed: October 11, 2006
    Publication date: April 19, 2007
    Inventors: Hyeoung-won Seo, Jae-man Yoon, Kang-yoon Lee, Dong-gun Park, Bong-soo Kim, Seong-goo Kim
  • Publication number: 20070085127
    Abstract: A fin type MOSFET and a method of manufacturing the fin type MOSFET are disclosed. Gate structures in the fin type MOSFET are formed by a damascene process without a photolithography process. Impurities used to form a channel region are selectively implanted into portions of a semiconductor substrate adjacent to the gate structures.
    Type: Application
    Filed: December 13, 2006
    Publication date: April 19, 2007
    Inventors: Hee-Soo Kang, Jae-Man Yoon, Dong-Gun Park, Sang-Yeon Han, Young-Joon Ahn, Choong-Ho Lee
  • Publication number: 20070082448
    Abstract: In a semiconductor device and a method of fabricating the same, a vertical channel transistor has a cell occupation area of 4 F2.
    Type: Application
    Filed: June 30, 2006
    Publication date: April 12, 2007
    Inventors: Bong-soo Kim, Jae-man Yoon, Seong-goo Kim, Hyeoung-won Seo, Dong-gun Park, Kang-yoon Lee
  • Publication number: 20070080385
    Abstract: There are provided a semiconductor device having a vertical transistor and a method of fabricating the same. The method includes preparing a semiconductor substrate having a cell region and a peripheral circuit region. Island-shaped vertical gate structures two-dimensionally aligned along a row direction and a column direction are formed on the substrate of the cell region. Each of the vertical gate structures includes a semiconductor pillar and a gate electrode surrounding a center portion of the semiconductor pillar. A bit line separation trench is formed inside the semiconductor substrate below a gap region between the vertical gate structures, and a peripheral circuit trench confining a peripheral circuit active region is formed inside the semiconductor substrate of the peripheral circuit region. The bit line separation trench is formed in parallel with the column direction of the vertical gate structures.
    Type: Application
    Filed: June 9, 2006
    Publication date: April 12, 2007
    Inventors: Bong-Soo Kim, Kang-Yoon Lee, Dong-Gun Park, Jae-Man Yoon, Seong-Goo Kim, Hyeoung-Won Seo
  • Publication number: 20070077693
    Abstract: Methods of fabricating a fin field effect transistor (FinFET) are disclosed. Embodiments of the invention provide methods of fabricating FinFETs by optimizing a method for forming the fin so that a short channel effect is prevented and high integration is achieved. Accordingly, the fin which has a difficulty in its formation using the current photolithography-etching technique may be readily formed.
    Type: Application
    Filed: November 16, 2006
    Publication date: April 5, 2007
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hyeoung-Won SEO, Woun-Suck YANG, Du-Heon SONG, Jae-Man YOON
  • Publication number: 20070075359
    Abstract: In a circuit device including vertical transistors connected to buried bitlines and a method of manufacturing the circuit device, the circuit device includes a semiconductor substrate including a peripheral circuit region and left and right cell regions at both sides of the peripheral circuit region; bottom active regions arranged on the semiconductor substrate to be spaced apart from one another in a column direction and to extend from the peripheral circuit region alternately to the left cell region and the right cell region in a row direction; channel pillars protruding from the bottom active regions in a vertical direction and arranged to be aligned in the row direction and spaced apart from one another; gate electrodes provided with a gate dielectric layer and attached to surround side surfaces of the channel pillars; buried bitlines extending along the bottom active regions, the bottom active regions including a bottom source/drain region; local interconnection lines contacting side surfaces of the gate
    Type: Application
    Filed: October 2, 2006
    Publication date: April 5, 2007
    Inventors: Jae-man Yoon, Dong-gun Park, Kang-yoon Lee, Choong-ho Lee, Bong-soo Kim, Seong-goo Kim, Hyeoung-won Seo, Seung-bae Park
  • Patent number: 7177192
    Abstract: A method of operating a NAND flash memory device that comprising a unit string comprising a string selection transistor connected to a bit line, a cell transistor connected to the string selection transistor, and a ground selection transistor connected to the cell transistor is provided. The method comprises applying a negative bias voltage to the string selection transistor and the ground selection transistor in a stand-by mode of the NAND flash memory device.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: February 13, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Man Yoon, Eun-Suk Cho, Dong-Gun Park, Choong-Ho Lee