Patents by Inventor Jae-Sik Chung

Jae-Sik Chung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080185738
    Abstract: A semiconductor device and a method for fabricating the same are disclosed. According to some embodiments, a semiconductor device comprises a lower structure formed on a semiconductor structure. The lower structure has chip pads. The semiconductor device further comprises a passivation layer located over the chip pads. The passivation layer comprises first openings defined therein to expose at least a portion of the chip pads. The semiconductor device additionally includes at least two adjacent redistribution lines spaced apart from each other and located over the passivation layer. The at least two redistribution lines are respectively coupled to the chip pads through corresponding ones of the first openings. The semiconductor device comprises a first insulation layer located over the passivation layer. The first insulation layer includes a void extending between the at least two adjacent redistribution lines.
    Type: Application
    Filed: January 18, 2008
    Publication date: August 7, 2008
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jae Sik CHUNG, Sung Min SIM, Hee Kook CHOI, Dong Hyeon JANG
  • Publication number: 20080076248
    Abstract: Provided is a method of forming conductors (e.g., metal lines and/or bumps) for semiconductor devices and conductors formed from the same. First and second seed metal layers may be formed. At least one mask may be formed on a portion on which a conductor is to be formed. An exposed portion may be oxidized. The oxidized portion may be removed. A conductive structure may be formed on an upper surface of a portion which is not oxidized. The conductors may be metal lines and/or bumps. The conductive structures may be solder balls.
    Type: Application
    Filed: October 31, 2006
    Publication date: March 27, 2008
    Inventors: Soon-bum Kim, Sung-min Sim, Dong-hyeon Jang, Jae-sik Chung, Se-yong Oh
  • Patent number: 7312143
    Abstract: A wafer level chip scale package may have a gap provided between a solder bump and a bump land. The gap may be filled with a gas. A method of manufacturing a wafer level chip scale package may involve forming a redistribution line having a first opening, forming a seed metal layer having a second opening including an undercut portion, and forming the gap using the first and the second openings.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: December 25, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myeong-Soon Park, Hyun-Soo Chung, In-Young Lee, Jae-Sik Chung, Sung-Min Sim, Dong-Hyeon Jang, Young-Hee Song, Seung-Kwan Ryu
  • Patent number: 7307340
    Abstract: An electronic module comprises a monolithic microelectronic substrate including at least one integrated circuit die, e.g., a plurality of unseparated memory dice or a mixture of different types of integrated circuit dice. The monolithic substrate further includes a redistribution structure disposed on the at least one integrated circuit die and providing a connector contact coupled to the at least one integrated circuit die. For example, the connector contact may be configured as edge connector contact for the module. The redistribution structure may be configured to provide a passive electronic device, e.g., an inductor, capacitor and/or resistor, electrically coupled to the at least one integrated circuit die and/or the redistribution structure may comprise at least one conductive layer configured to provide electrical connection to a contact pad of an electronic device mounted on the substrate. Methods of fabricating electronic modules are also discussed.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: December 11, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung Duk Baek, Dong Hyeon Jang, Gu Sung Kim, Kang Wook Lee, Jae Sik Chung
  • Publication number: 20070281374
    Abstract: A chip stack package is manufactured at a wafer level by forming connection vias in the scribe lanes adjacent the chips and connecting the device chip pads to the connection vias using rerouting lines. A lower chip is then attached and connected to a substrate, which may be a test wafer, and an upper chip is attached and connected to the lower chip, the electrical connections being achieved through their respective connection vias. In addition to the connection vias, the chip stack package may include connection bumps formed between vertically adjacent chips and/or the lower chip and the substrate. The preferred substrate is a test wafer that allows the attached chips to be tested, and replaced if faulty, thereby ensuring that each layer of stacked chips includes only “known-good die” before the next layer of chips is attached thereby increasing the production rate and improving the yield.
    Type: Application
    Filed: August 13, 2007
    Publication date: December 6, 2007
    Inventors: Kang-Wook Lee, Gu-Sung Kim, Dong-Hyeon Jang, Seung-Duk Baek, Jae-Sik Chung
  • Patent number: 7276799
    Abstract: A chip stack package is manufactured at a wafer level by forming connection vias in the scribe lanes adjacent the chips and connecting the device chip pads to the connection vias using rerouting lines. A lower chip is then attached and connected to a substrate, which may be a test wafer, and an upper chip is attached and connected to the lower chip, the electrical connections being achieved through their respective connection vias. In addition to the connection vias, the chip stack package may include connection bumps formed between vertically adjacent chips and/or the lower chip and the substrate. The preferred substrate is a test wafer that allows the attached chips to be tested, and replaced if faulty, thereby ensuring that each layer of stacked chips includes only “known-good die” before the next layer of chips is attached thereby increasing the production rate and improving the yield.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: October 2, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kang-Wook Lee, Gu-Sung Kim, Dong-Hyeon Jang, Seung-Duk Baek, Jae-Sik Chung
  • Publication number: 20070176290
    Abstract: A wafer level chip scale package may have a gap provided between a solder bump and a bump land. The gap may be filled with a gas. A method of manufacturing a wafer level chip scale package may involve forming a redistribution line having a first opening, forming a seed metal layer having a second opening including an undercut portion, and forming the gap using the first and the second openings.
    Type: Application
    Filed: March 14, 2007
    Publication date: August 2, 2007
    Inventors: Myeong-Soon Park, Hyun-Soo Chung, In-Young Lee, Jae-Sik Chung, Sung-Min Sim, Dong-Hyeon Jang, Young-Hee Song, Seung-Kwan Ryu
  • Patent number: 7205660
    Abstract: A wafer level chip scale package may have a gap provided between a solder bump and a bump land. The gap may be filled with a gas. A method of manufacturing a wafer level chip scale package may involve forming a redistribution line having a first opening, forming a seed metal layer having a second opening including an undercut portion, and forming the gap using the first and the second openings.
    Type: Grant
    Filed: July 22, 2005
    Date of Patent: April 17, 2007
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Myeong-Soon Park, Hyun-Soo Chung, In-Young Lee, Jae-Sik Chung, Sung-Min Sim, Dong-Hyeon Jang, Young-Hee Song, Seung-Kwan Ryu
  • Publication number: 20070069320
    Abstract: A wiring structure may include a pad, a conductive pattern and an insulating photoresist structure. The pad may be provided on a body and electrically connected to a circuit unit of the body. The conductive pattern may be provided on the body and may be electrically connected to the pad. The insulating photoresist structure may be provided on a surface of the conductive pattern. The insulating photoresist structure may have a contact hole through which the conductive pattern may be partially exposed. The insulating photoresist structure may be fabricated by providing a photosensitive photoresist film on the conductive layer, and patterning the photosensitive photoresist film by two photo processes.
    Type: Application
    Filed: July 14, 2006
    Publication date: March 29, 2007
    Inventors: In-Young Lee, Sung-Min Sim, Dong-Hyeon Jang, Hyun-Soo Chung, Jae-Sik Chung, Seung-Kwan Ryu, Myeong-Soon Park, Jong-Kook Yoon, Ju-Il Choi
  • Publication number: 20060214293
    Abstract: A wafer level chip scale package may have a gap provided between a solder bump and a bump land. The gap may be filled with a gas. A method of manufacturing a wafer level chip scale package may involve forming a redistribution line having a first opening, forming a seed metal layer having a second opening including an undercut portion, and forming the gap using the first and the second openings.
    Type: Application
    Filed: July 22, 2005
    Publication date: September 28, 2006
    Inventors: Myeong-Soon Park, Hyun-Soo Chung, In-Young Lee, Jae-Sik Chung, Sung-Min Sim, Dong-Hyeon Jang, Young-Hee Song, Seung-Kwan Ryu
  • Publication number: 20060017161
    Abstract: An apparatus and method for manufacturing a semiconductor package are disclosed. The apparatus may include at least a semiconductor chip having input/output (I/O) pads arranged on a surface thereof, a first dielectric layer formed on the surface of the semiconductor chip which may expose the I/O pads, a seed metal layer selectively formed on the first dielectric layer and the I/O pads, re-routing lines formed on the seed metal layer and electrically coupled to the I/O pads, a protective coating layer on side surfaces and an upper surface of each re-routing line, a second dielectric layer formed on the first dielectric layer which may cover the re-routing lines surrounded with the protective coating layer, and solder balls formed on the respective pads and electrically coupled to the re-routing lines.
    Type: Application
    Filed: July 22, 2005
    Publication date: January 26, 2006
    Inventors: Jae-Sik Chung, Se-Young Jeong, Dong-Hyeon Jang
  • Publication number: 20050214597
    Abstract: An integral cap assembly comprising a top cap mounted as a base plate to an opening of a battery can and a cap subassembly including a protective circuit module and the like integrally mounted on the top cap, a method for manufacturing a secondary battery comprising the same, and a secondary battery manufactured thereby are disclosed. The cap assembly is provided as an integral member comprising the top cap acting as the base plate, and the cap subassembly having the protective circuit module provided thereon, thereby simplifying a manufacturing process of the battery while minimizing frequency of defective products. Additionally, the integral cap assembly is manufactured through insert injection molding, thereby providing notable advantages over the conventional technology.
    Type: Application
    Filed: February 16, 2005
    Publication date: September 29, 2005
    Applicant: LG Chem, Ltd.
    Inventors: Hyungchan Kim, Hee gyu Kim, Yong-ho Cho, Jae sik Chung
  • Publication number: 20050046002
    Abstract: A chip stack package is manufactured at a wafer level by forming connection vias in the scribe lanes adjacent the chips and connecting the device chip pads to the connection vias using rerouting lines. A lower chip is then attached and connected to a substrate, which may be a test wafer, and an upper chip is attached and connected to the lower chip, the electrical connections being achieved through their respective connection vias. In addition to the connection vias, the chip stack package may include connection bumps formed between vertically adjacent chips and/or the lower chip and the substrate. The preferred substrate is a test wafer that allows the attached chips to be tested, and replaced if faulty, thereby ensuring that each layer of stacked chips includes only “known-good die” before the next layer of chips is attached thereby increasing the production rate and improving the yield.
    Type: Application
    Filed: July 15, 2004
    Publication date: March 3, 2005
    Inventors: Kang-Wook Lee, Gu-Sung Kim, Dong-Hyeon Jang, Seung-Duk Baek, Jae-Sik Chung
  • Patent number: 6692874
    Abstract: The present invention relates to a lithium ion battery, more particularly to a new electrolyte for a lithium ion battery, the new electrolyte comprising a compound which is either 4-carbomethoxymethyl 1,3-dioxan-2-one or 4-carboethoxymethyl 1,3-dioxan-2-one. Each of these compounds comprises a cyclic ring carbonate structure and a linear carbonate structure. The battery also comprises an anode including graphitized carbon and a cathode including a lithium transition metal oxide, and exhibits a superior charge-discharge life cycle characteristic and low temperature performance.
    Type: Grant
    Filed: September 7, 2001
    Date of Patent: February 17, 2004
    Assignee: LG Chemical Co., Ltd.
    Inventors: Hyeong-Jin Kim, Seung-II Yoo, Jae-Sik Chung
  • Publication number: 20030087162
    Abstract: The present invention relates to a lithium ion battery, more particularly to a new electrolyte and a lithium ion battery which comprises the same using an anode including graphitized carbon and a cathode including lithium-containing transition metal oxide. The present invention provides a compound of 4-carbomethoxymethyl-1,3-dioxan-2-one or 4-carboethoxymethyl-1,3-dioxolan-2-one represented by formula (1) which comprises both a cyclic ring carbonate structure and a linear carbonate structure, a lithium-containing electrolyte which includes the compound of formula (1), and a lithium ion battery which includes the electrolyte using the anode including graphitized carbon and the cathode including lithium-containing transition metal oxide. The lithium ion battery of the present invention fabricated by using the new compound has high electric capacity because of the graphitized carbon, and superior charge-discharge cyclic life characteristic and low temperature performance.
    Type: Application
    Filed: September 7, 2001
    Publication date: May 8, 2003
    Inventors: Hyeong-Jin Kim, Seung-II Yoo, Jae-Sik Chung