Patents by Inventor Jainagesh Sekhar

Jainagesh Sekhar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070145038
    Abstract: A coil-in-coil electric heating assembly for industrial applications heats any gas through an annular space between the coils to very high temperatures. Gas is introduced into the annular space through one open end of a tubular enclosure and leaves through an opposite end after being significantly heated. Coils may be made from several heating element materials and may be wound in the same direction or opposite direction. The opposite winding direction often gives a higher temperature of the exit gas. Temperatures even as high as 1500° C. in the exit gas have been recorded. The heating system may be utilized to generate superheated steam for industrial applications even in a recirculating manner.
    Type: Application
    Filed: March 5, 2007
    Publication date: June 28, 2007
    Applicant: MICROPYRETICS HEATERS INTERNATIONAL, INC.
    Inventors: Ramgopal Vissa, Ganta Reddy, Jainagesh Sekhar
  • Patent number: 7067775
    Abstract: A treatment and an object so treated, which may be used to improve the electrical stability, energy efficiency and performance of silicon carbide heating elements is disclosed. Use is made of colloidal binders and silicides to treat silicon carbide heating elements in a manner which improves their electrical stability during use. The resultant heating element may be used to conserve energy, during its life cycle because of the use of lower power.
    Type: Grant
    Filed: February 21, 2003
    Date of Patent: June 27, 2006
    Assignee: Micropyretics Heaters International, Inc.
    Inventor: Jainagesh Sekhar
  • Patent number: 6816671
    Abstract: This invention relates to the field of medium temperature plasma production device with a novelty where the plasma is created and transferred convectively to a part.
    Type: Grant
    Filed: December 3, 2003
    Date of Patent: November 9, 2004
    Assignee: Micropyretics Heaters International, Inc.
    Inventors: Ganta Reddy, Jainagesh Sekhar
  • Patent number: 6656340
    Abstract: A cell of advanced design for the production of aluminium by the electrolysis of an aluminium compound dissolved in a molten electrolyte, has a cathode (30) of drained configuration, and at least one non-carbon anode (10) facing the cathode both covered by the electrolyte (54). The upper part of the cell contains a removable thermic insulating cover (60) placed just above the level of the electrolyte (54). Preferably, the cathode (30) comprises a cathode mass (32) supported by a cathode carrier (31) made of electrically conductive material which serves also for the uniform distribution of electric current to the cathode mass (32) from current feeders (42) which connect the cathode carrier (31) to the negative busbars.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: December 2, 2003
    Assignee: Moltech Invent S.A.
    Inventors: Vittorio de Nora, Jainagesh A. Sekhar
  • Publication number: 20030183621
    Abstract: This invention claims a treatment, which may be used to improve the performance of silicon carbide heating elements. Further the stability of such elements is also increased by the treatment thus giving rise to significant energy saving and high productivity with such heating elements.
    Type: Application
    Filed: February 21, 2003
    Publication date: October 2, 2003
    Inventor: Jainagesh Sekhar
  • Patent number: 6607657
    Abstract: Carbon-containing components of cells for the production of aluminium by the electrolysis of alumina dissolved in a cryolite-based molten electrolyte are protected from attack by liquid and/or gaseous components of the electrolyte in the form of elements, ions or compounds, by a refractory boride coating applied from a slurry composed of pre-formed particulate refractory boride in a colloidal carrier which is dried and heated to consolidate the coating.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: August 19, 2003
    Assignee: Moltech Invent S.A.
    Inventors: Vittorio de Nora, Jainagesh A. Sekhar
  • Publication number: 20030102228
    Abstract: A cell of advanced design for the production of aluminium by the electrolysis of an aluminium compound dissolved in a molten electrolyte, has a cathode (30) of drained configuration, and at least one non-carbon anode (10) facing the cathode both covered by the electrolyte (54). The upper part of the cell contains a removable thermic insulating cover (60) placed just above the level of the electrolyte (54). Preferably, the cathode (30) comprises a cathode mass (32) supported by a cathode carrier (31) made of electrically conductive material which serves also for the uniform distribution of electric current to the cathode mass (32) from current feeders (42) which connect the cathode carrier (31) to the negative busbars.
    Type: Application
    Filed: June 4, 2002
    Publication date: June 5, 2003
    Inventors: Vittorio de Nora, Jainagesh A. Sekhar
  • Patent number: 6455107
    Abstract: A body of carbonaceous or other material for use in corrosive environments such as oxidising media or gaseous or liquid corrosive agents at elevated temperatures, in particular in molten salts such as cryolite, is coated with a protective surface coating which improves the resistance of the body to oxidation or corrosion and which may also enhance the bodies electrical conductivity and/or its electrochemical activity. The protective coating is applied in one or more layers from a colloidal slurry containing reactant or non-reactant substances, or a mixture of reactant and non-reactant substances, in particular mixtures containing silicon carbide and molybdenum silicide or silicon carbide and silicon nitride, which when the body is heated to a sufficient elevated temperature reaction sinter as a result of micropyretic reaction and/or sinter without reaction to form the protective coating.
    Type: Grant
    Filed: April 30, 1996
    Date of Patent: September 24, 2002
    Assignee: Moltech Invent S.A.
    Inventors: Jainagesh A. Sekhar, Vittorio de Nora
  • Patent number: 6402928
    Abstract: A cell of advanced design for production aluminum by the electrolysis of an aluminum compound dissolve in a molten ectrolyte, has a cathode (30) of drained configuration, and at least one non-carbon anode (10) facing the cathode both covered by the electrolyte (54). The upper part of the cell contains a removable thermic insulating cover (60) placed just above the level of the electrolyte (54). Preferably, the cathode (30) comprises a cathode mass (32) supported by a cathode carrier (31) made of electrically conductive material which serves also for the uniform distribution of electric current feeders (42) which connect the cathode carrier (31) to the negative busbars.
    Type: Grant
    Filed: March 31, 2000
    Date of Patent: June 11, 2002
    Assignee: Moltech Invent S.A.
    Inventors: Vittorio de Nora, Jainagesh A. Sekhar
  • Publication number: 20020043469
    Abstract: Carbon-containing components of cells for the production of aluminium by the electrolysis of alumina dissolved in a cryolite-based molten electrolyte are protected from attack by liquid and/or gaseous components of the electrolyte in the form of elements, ions or compounds, by a refractory boride coating applied from a slurry composed of pre-formed particulate refractory boride in a colloidal carrier which is dried and heated to consolidate the coating.
    Type: Application
    Filed: July 25, 2001
    Publication date: April 18, 2002
    Inventors: Vittorio de Nora, Jainagesh A. Sekhar
  • Patent number: 6287447
    Abstract: Carbon-containing components of cells for the production of aluminium by the electrolysis of alumina dissolved in a cryolite-based molten electrolyte are protected from attack by liquid and/or gaseous components of the electrolyte in the form of elements, ions or compounds, by a refractory boride coating applied from a slurry composed of pre-formed particulate refractory boride in a colloidal carrier which is dried and heated to consolidate the coating.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: September 11, 2001
    Assignee: Moltech Invent S.A.
    Inventors: Vittorio de Nora, Jainagesh A. Sekhar
  • Patent number: 6194096
    Abstract: A carbon body, in particular a prebaked anode of an electrolytic cell for the production of aluminum by the electrolysis of alumina in a molten fluoride electrolyte, is treated over its surfaces to improve the resistance thereof to deterioration during operation of the cell by air and oxidizing gases released at the anode, by immersing the body in a treating liquid containing a soluble boron compound and at least one additive from the group consisting of aluminum compounds, calcium compounds, sodium compounds, magnesium compounds, silicon compounds, elemental carbon, and elemental aluminum, said additive being in the form of a powder, in suspension such as a colloid, or in solution, e.g., at 80° to 120° C. The same treatment can also be applied to a carbon mass forming a Söderberg anode and to cell sidewalls. The additives increase strength and improve oxidation resistance compared to impregnation with boric acid alone.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: February 27, 2001
    Assignee: Moltech Invent S.A
    Inventors: Jainagesh A. Sekhar, Vittorio de Nora, Jean-Jacques Duruz
  • Patent number: 6180182
    Abstract: A component of an aluminium production cell, in particular a cathode or a cell lining of an electrolytic cell for the production of aluminium by the electrolysis of alumina in cryolite, having an aluminium-wettable refractory coating on a heat-stable baked carbon-containing body, is produced from a part-manufactured cell component which is a layered composite of two precursors. A precursor layer of the aluminium-wettable refractory coating contains at least one aluminium-wettable refractory material in particulate form, or a particulate micropyretic reaction mixture which when ignited reacts to form at least one aluminium-wettable refractory material, or a mixture thereof, and non-carbon fillers and binders. A non-baked or part-baked precursor of the heat-stable carbon-containing body comprises particulate carbon compacted with a heat-convertible binder which when subjected to heat treatment binds the particulate carbon into the heat-stable carbon-containing body of the fully-manufactured cell component.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: January 30, 2001
    Assignee: Moltech Invent S.A.
    Inventors: Jainagesh A. Sekhar, Vittorio de Nora
  • Patent number: 6139704
    Abstract: Carbon-containing components of cells for the production of aluminium by the electrolysis of alumina dissolved in a cryolite-based molten electrolyte are protected from attack by liquid and/or gaseous components of the electrolyte in the form of elements, ions or compounds, by a refractory boride coating applied from a slurry composed of pre-formed particulate refractory boride in a colloidal carrier which is dried and heated to consolidate the coating.
    Type: Grant
    Filed: January 22, 1999
    Date of Patent: October 31, 2000
    Assignee: Moltech Invent S.A.
    Inventors: Vittorio de Nora, Jainagesh A. Sekhar
  • Patent number: 6103091
    Abstract: A method of producing a self-sustaining body of refractory boride from the group consisting of the borides of titanium, chromium, vanadium, zirconium, hafnium, niobium, tantalum, molybdenum and cerium. This body includes a refractory boride and a dried colloid from the group consisting of colloidal alumina, silica, yttria, ceria, thoria, magnesia, lithia, monoaluminium phosphate and cerium acetate and is obtained from a slurry of the refractory boride in one or more of said colloids by casting the slurry on a porous plaster layer, and drying the cast slurry by draining through the plaster, or by pressing/drying. Subsequently, the dried body is subjected to heat treatment to bond the refractory boride in the dried colloid. The bodies are useful as components of aluminium electrowinning cells.
    Type: Grant
    Filed: June 19, 1998
    Date of Patent: August 15, 2000
    Assignee: Moltech Invent S.A.
    Inventors: Jainagesh A. Sekhar, Jean-Jacques Duruz, Vittorio de Nora
  • Patent number: 6099978
    Abstract: High emissivity molybdenum silicide-containing ceramic and metal-ceramic products are provided, especially for use as heaters in rapid solidification processing (RSP) and rapid thermal processing (RTP). Novel designs incorporating such heaters are also provided.
    Type: Grant
    Filed: January 28, 1999
    Date of Patent: August 8, 2000
    Assignee: Micropyrctics Heaters International, Inc.
    Inventor: Jainagesh A. Sekhar
  • Patent number: 6001236
    Abstract: Carbon-containing components of cells for the production of aluminium by the electrolysis of alumina dissolved in a cryolite-based molten electrolyte are protected from attack by liquid and/or gaseous components of the electrolyte in the form of elements, ions or compounds, by a refractory boride coating applied from a slurry composed of pre-formed particulate refractory boride in a colloidal carrier which is dried and heated to consolidate the coating.
    Type: Grant
    Filed: August 30, 1996
    Date of Patent: December 14, 1999
    Assignee: Moltech Invent S.A.
    Inventors: Vittorio de Nora, Jainagesh A. Sekhar
  • Patent number: 5985114
    Abstract: A carbon body, in particular a pre-baked anode of an electrolytic cell for the production of aluminium by the electrolysis of alumina in a molten fluoride electrolyte is treated over its surfaces to improve the resistance thereof to deterioration during operation of the cell by air and oxidizing gases released at the anode, by treating the body with a treating liquid comprising a precipitable boron-containing compound and an additive, said additive being present in an amount so that substantially no separate phase from said the precipitate of said boron-containing compound is formed upon curing. Suitable boron oxide additives include colloidal alumina, silica, yttria, ceria, thoria, zirconia, magnesia, lithia, monoaluminium phosphate, cerium acetate and mixtures thereof. The same treatment can also be applied to a carbon mass forming a Soderberg anode and to cell sidewalls.
    Type: Grant
    Filed: September 15, 1997
    Date of Patent: November 16, 1999
    Assignee: Moltech Invent S.A.
    Inventors: Jainagesh A. Sekhar, James Jenq Liu, Jean-Jacques Duruz
  • Patent number: 5963709
    Abstract: A hot air blower is provided having a first material, a second material, and a gap disposed between the two materials. The gap provides residence time in order for a gaseous flow delivered through the blower to become heated. The materials preferably comprise porous ceramic foam and provide a tortuous path for the gaseous flow. The preferred ratio of the volume of the materials to the volume of the gap is 3. The blower also preferably comprises a heating element for imparting heat to the gaseous flow, and a fan for creating the flow.
    Type: Grant
    Filed: May 13, 1997
    Date of Patent: October 5, 1999
    Assignee: Micropyretics Heaters International, Inc.
    Inventors: Kandy Staples, Vijay Sarvepalli, Ming Fu, Jainagesh A. Sekhar
  • Patent number: 5904828
    Abstract: An anode for the electrowinning of aluminium by the electrolysis of alumina dissolved in a molten fluoride electrolyte comprises a porous combustion synthesis product of nickel, aluminium, iron, copper and optional doping elements in the amounts 50-90 wt. % nickel, 3-20 wt. % aluminium, 5-20 wt. % iron, 0-15 wt. % copper and 0-5 wt. % of one or more of chromium, manganese, titanium, molybdenum, cobalt, zirconium, niobium, tantalum, yttrium, cerium, oxygen, boron and nitrogen. The combustion synthesis product contains metallic and intermetallic phases. A composite oxide surface is produced in situ by anodic polarization of the porous combustion synthesis product in a molten fluoride electrolyte containing dissolved alumina. The in situ formed composite oxide surface comprises an iron-rich relatively dense outer portion, and an aluminate-rich relatively porous inner portion.
    Type: Grant
    Filed: April 11, 1997
    Date of Patent: May 18, 1999
    Assignee: Moltech Invent S.A.
    Inventors: Jainagesh A. Sekhar, James Jenq Liu, Jean-Jacques Duruz