Patents by Inventor Jainagesh Sekhar

Jainagesh Sekhar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9261273
    Abstract: Apparatus and method to produce point-of-use compressed superheated steam for a wide variety of uses including, but not limited to, cleaning, heating, drying, surface preparation, sterilization, pest control and elimination, degreasing and food preparation. The apparatus produces and compresses superheated steam without the hazards and problems associated with the current state of the art where steam is generated, compressed and stored in potentially dangerous and maintenance intensive boilers and associated piping and fixtures. The in-line steam generator of the present application produces superheated steam at one atmosphere which is immediately pressurized using a compression means and then immediately utilized through application employing a nozzle or a storage tank or other such device.
    Type: Grant
    Filed: February 16, 2012
    Date of Patent: February 16, 2016
    Assignee: MHI Health Devices, LLC
    Inventors: Jerod Batt, Jainagesh Sekhar, Michael Connelly
  • Patent number: 9249492
    Abstract: Exemplary materials exhibiting high emissivity and methods for making them are provided. These materials can include a porous coating of small particles provided on a substrate, where the particles can resist sintering and further densification at high temperatures. These materials may be formed by generating an arc using a one-sided electrode apparatus, where particles produced by the arc and electrode can impinge on the substrate and adhere to it. The coating can include predominantly undensified small particles which can have a size less than about 1 ?m. These materials can have an emissivity greater than 0.8 or 0.9. Such materials can be used to form infrared emitters which may provide greater energy efficiency and increased operating lifetime as compared to uncoated emitters. Surfaces coated with small particles may be used in further applications such as catalytic or reactive surfaces, engine components, or acoustical dampening surfaces.
    Type: Grant
    Filed: November 7, 2006
    Date of Patent: February 2, 2016
    Assignee: Micropyretics Heaters International, Inc.
    Inventors: Ganta S. Reddy, Jainagesh Sekhar
  • Publication number: 20160018100
    Abstract: A compact steaming device, which may be handheld, and method for the generation at one atmosphere and projection of superheated steam over objects and surfaces for the elimination and control of unwanted microorganisms and pests including, but not limited to bedbugs, fleas, ants, lice and mites. A preferred embodiment of such a compact device comprises a vessel, a base, heating coils, a superheated steam generator and an external power supply for the initial boiling of a liquid to vapor and for subsequent heating of the vapor to superheated temperatures. The device and method allow for the generation of steam or gas and subsequent superheating to be accomplished safely at one atmosphere. The preferred embodiment allows for the free flow of the gas through and out of the compact device safely and effectively relieving any resulting pressure. A multi-watt embodiment is also envisioned which may be handheld or stationary.
    Type: Application
    Filed: June 8, 2012
    Publication date: January 21, 2016
    Applicant: MICROPYRETICS HEATERS INTERNATIONAL, INC.
    Inventors: Jerod Batt, Jainagesh Sekhar, Ramgopal Vissa, Michael Connelly, Brian Kandell
  • Publication number: 20160018101
    Abstract: An apparatus and method for the instant generation of superheated steam at normal atmospheric pressure are presented. Such an apparatus includes a water source, a means to convert the water to a mist or atomized droplets and a means to superheat the mist for application onto surfaces and objects. The apparatus and method are based upon the unique properties and behavior of misted water when it comes into contact with a heated surface, such behavior and properties resulting in the efficient and expansive release of energy and superheated steam. Such an apparatus can produce this steam at one atmosphere without the need of a boiler or other required high pressure fixtures or piping.
    Type: Application
    Filed: August 26, 2013
    Publication date: January 21, 2016
    Inventors: Ramgopal Vissa, Jainagesh Sekhar, Venkata Burada
  • Publication number: 20150181685
    Abstract: Presented is a method for the surface treatment of objects utilizing thermal plasma, including cascade plasma, and a wrap, such as tape or foil, where the tape or foil attracts the specific part of the plasma which produces a heat necessary to produce the desired treatment. The specific surface treatment may include, but is not limited to, hard-facing, brazing, welding, other types of joining operations, glass bending or forming, glass texturing, coating and surface reconditioning.
    Type: Application
    Filed: December 22, 2014
    Publication date: June 25, 2015
    Applicant: Micropyretics Heaters International. Inc.
    Inventors: Jainagesh Sekhar, Michael Connelly
  • Patent number: 8895888
    Abstract: A device to provide improved anti-smudging, better gripping and longer shelf-life to products and surfaces includes an electric superheated steam generator and an electric low-ion plasma generator to provide superheated steam and low-ion plasma to the surfaces of products including plastics. One embodiment envisions the superheated steam generator and the low-ion plasma generator being contained in a housing while another embodiment anticipates a conveyor means positioned in front of the superheated steam generator and the low-ion plasma generator. A method for the improving of anti-smudging, gripping and shelf-life for properties includes the application of superheated steam and low-ion plasma by means of a superheated steam generator and a low-ion plasma generator to products for specific periods of time and at specific distances to attain desired surface and bulk properties. The superheated steam and low-ion plasma may be applied individually, simultaneously or sequentially.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: November 25, 2014
    Assignee: Micropyretics Heaters International, Inc.
    Inventors: Venkata Burada, Jainagesh Sekhar, Jerod Batt, Ganta S. Reddy, Brian Kandell
  • Publication number: 20140109794
    Abstract: A protective treatment for silicide coated materials and objects, including heating elements so treated, which may be used to improve the electrical stability, oxidation resistance, energy efficiency and performance is disclosed as well as improved silicide materials. Use is made of Al—O type compounds and silicides to treat heating elements in a manner which improves their electrical stability during use. The treatment may consist of a colloidal alumina in slurry form applied to materials and objects. The resultant heating element may be used to conserve energy during its life-cycle because of the use of lower power. It is envisioned that materials other than silicide coated ones may treated in a like manner.
    Type: Application
    Filed: October 22, 2012
    Publication date: April 24, 2014
    Inventor: Jainagesh Sekhar
  • Patent number: 8652403
    Abstract: An apparatus for generating superheated steam capable of reducing or eliminating microorganisms associated with an item includes a gas heater for heating a gas, a steam generator coupled to the gas heater and having a reservoir for supplying water, wherein the heater heats the gas such that when water is combined therewith, a mixture of superheated steam and gas capable of reducing or eliminating microorganisms is discharged from the apparatus. The generation of the steam-gas mixture may be done at one atmosphere of pressure and the mixing may be done prior to expelling the fluid from the apparatus. The apparatus may be configured as a hand-held device, A method of treating an item for microorganisms includes generating a superheated steam at approximately one atmosphere of pressure, directing a flow of the steam onto the item, and reducing or eliminating microorganisms using the steam.
    Type: Grant
    Filed: February 15, 2013
    Date of Patent: February 18, 2014
    Assignee: Micropyretics Heaters International, Inc.
    Inventors: Ganta Reddy, Jainagesh Sekhar, Ramgopal Vissa
  • Publication number: 20130330388
    Abstract: A method and resulting structure are described for the production of refractory and insulative boards comprised of ceramic balls. Improved thermal, physical and mechanical properties are achieved as while also eliminating the safety and environmental impact of fibrous refractories. Also presented is an apparatus and method to remove bacteria and toxins (harmful or undesirable chemicals) from a water column utilizing porous ball-like or sphere-like structures treated with anti-microbial coatings are described. The balls so formed may be coated with a variety of anti-microbial materials and placed within a water or fluid column or water or fluid flowing system.
    Type: Application
    Filed: May 31, 2013
    Publication date: December 12, 2013
    Applicant: MATTECH, INC.
    Inventor: Jainagesh Sekhar
  • Publication number: 20130323139
    Abstract: Apparatus and method to produce point-of-use compressed superheated steam for a wide variety of uses including, but not limited to, cleaning, heating, drying, surface preparation, sterilization, pest control and elimination, degreasing and food preparation. The apparatus produces and compresses superheated steam without the hazards and problems associated with the current state of the art where steam is generated, compressed and stored in potentially dangerous and maintenance intensive boilers and associated piping and fixtures. The in-line steam generator of the present application produces superheated steam at one atmosphere which is immediately pressurized using a compression means and then immediately utilized through application employing a nozzle or a storage tank or other such device.
    Type: Application
    Filed: February 16, 2012
    Publication date: December 5, 2013
    Applicant: MICROPYRETICS HEATERS INTERNATIONAL, INC.
    Inventors: Jerod Batt, Jainagesh Sekhar, Michael Connelly
  • Publication number: 20130196365
    Abstract: Durable nanoporous nanostructured materials that modify, eliminate and destroy biofilms that may develop due to the presence of bacteria, fungi and other microbes and method for making the same. Such nanoporous nanostructures may be deposited as coatings on a substrate and such coatings may include at least one nanopore and a plurality of nanoparticles which adhere to the substrate and/or other particles. The nanostructure can be produced using a single-sided electrode arrangement which is configured to produce an electrical arc or discharge at one end of an electrode and to emit the nanoparticles. The nanoparticles form a non-porous framework which delineates any nanopores and which can be deposited as one or more layers of nanothickness. Such nano structures may be resistant to removal from the substrate. Also described are testing methods and apparatus for the quick, accurate and simple evaluation of the efficacy of the antibiofilm properties of the nanoporous nano structure.
    Type: Application
    Filed: May 3, 2011
    Publication date: August 1, 2013
    Applicant: MICROPYRETICS HEATERS INTERNATIONAL, INC.
    Inventors: Ganta S. Reddy, Jainagesh Sekhar
  • Publication number: 20130164171
    Abstract: An apparatus for generating superheated steam capable of reducing or eliminating microorganisms associated with an item includes a gas heater for heating a gas, a steam generator coupled to the gas heater and having a reservoir for supplying water, wherein the heater heats the gas such that when water is combined therewith, a mixture of superheated steam and gas capable of reducing or eliminating microorganisms is discharged from the apparatus. The generation of the steam-gas mixture may be done at one atmosphere of pressure and the mixing may be done prior to expelling the fluid from the apparatus. The apparatus may be configured as a hand-held device, A method of treating an item for microorganisms includes generating a superheated steam at approximately one atmosphere of pressure, directing a flow of the steam onto the item, and reducing or eliminating microorganisms using the steam.
    Type: Application
    Filed: February 15, 2013
    Publication date: June 27, 2013
    Applicant: Micropyretics heaters International, Inc.
    Inventors: Ganta Reddy, Jainagesh Sekhar, Ramgopal Vissa
  • Publication number: 20120298133
    Abstract: A device to provide improved anti-smudging, better gripping and longer shelf-life to products and surfaces includes an electric superheated steam generator and an electric low-ion plasma generator to provide superheated steam and low-ion plasma to the surfaces of products including plastics. One embodiment envisions the superheated steam generator and the low-ion plasma generator being contained in a housing while another embodiment anticipates a conveyor means positioned in front of the superheated steam generator and the low-ion plasma generator. A method for the improving of anti-smudging, gripping and shelf-life for properties includes the application of superheated steam and low-ion plasma by means of a superheated steam generator and a low-ion plasma generator to products for specific periods of time and at specific distances to attain desired surface and bulk properties. The superheated steam and low-ion plasma may be applied individually, simultaneously or sequentially.
    Type: Application
    Filed: September 20, 2010
    Publication date: November 29, 2012
    Inventors: Venkata Burada, Jainagesh Sekhar, Jerod Batt, G.S. Reddy, Brian Kandell
  • Publication number: 20120045627
    Abstract: Durable interactive coatings which may be deposited on a substrate which impact bulk properties i.e. bulk modifying coatings, and a method and apparatus for producing them. Such coatings can include a plurality of particles which adhere to the substrate surface and/or other particles and include films. The particles can be provided as one or more layers of nanoscale particles having an average size of less than about 1000 nm, 800 nm, 500 nm, or 200 nm or 100 nm or less than 50 nm. Such bulk modifying coatings can have a thickness that is less than about 5000 nm, 800 nm, 500 nm, or 250 nm or even 200 nm. Thicker coatings or thinner coatings are provided depending on the potential field thermodynamic interaction of the substrate and particles for bulk property enhancement. Corresponding films are also provided.
    Type: Application
    Filed: May 22, 2009
    Publication date: February 23, 2012
    Inventors: Jainagesh Sekhar, Ganta Reddy
  • Patent number: 8119954
    Abstract: A coil-in-coil electric heating assembly for industrial applications heats any gas through an annular space between the coils to very high temperatures. Gas is introduced into the annular space through one open end of a tubular enclosure and leaves through an opposite end after being significantly heated. Coils may be made from several heating element materials and may be wound in the same direction or opposite direction. The opposite winding direction often gives a higher temperature of the exit gas. Temperatures even as high as 1500° C. in the exit gas have been recorded. The heating system may be utilized to generate superheated steam for industrial applications even in a recirculating manner.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: February 21, 2012
    Assignee: Micropyretics Heaters International, Inc.
    Inventors: Ramgopal Vissa, Ganta S. Reddy, Jainagesh A. Sekhar
  • Publication number: 20100150775
    Abstract: A sterilizing apparatus (10, 80) includes an enclosure (18, 84) defining an interior chamber (20, 86) and a door (22) for accessing the interior chamber (20, 86). A fluid source (42, 88) communicates with the chamber (20, 86) to supply a working fluid thereto. A heater (64, 102) heats the fluid in the chamber (20, 86) and a pump (62, 82) moves the fluid in the chamber (20, 86) by the heater (64, 102). A valve (50, 150) communicates with the chamber (20, 86) and with the exterior of the chamber (20, 86) and is configured to vent the fluid in the chamber (20, 86) to the exterior at a pressure of approximately one atmosphere. Such provides superheating and concentrating of the working fluid in the chamber (20, 86). A method of sterilization includes introducing a working fluid into an interior chamber (20, 86) and circulating the fluid through at least one recirculation loop (54, 96) having a heater (64, 102) for heating the fluid to an operational temperature suitable for killing microorganisms.
    Type: Application
    Filed: November 14, 2007
    Publication date: June 17, 2010
    Applicant: MICROPYRETICS HEATERS INTERNATIONAL, INC.
    Inventors: Ganta S. Reddy, Ramgopal Vissa, Jainagesh A. Sekhar
  • Publication number: 20100136325
    Abstract: Durable antimicrobial coatings which may be deposited on a substrate, and method and apparatus for producing them. Such coatings can include a plurality of particles which adhere to the substrate and/or other particles. The particles can be provided using a single-sided electrode arrangement, which is configured to produce an electrical arc or discharge at one end of an electrode and to emit the particles from the electrode, where the arc or discharge can be produced without the end of the electrode being in proximity to a grounded object. The particles can be provided as one or more layers of nanoscale particles having an average size of less than about 1000 nm, 800 nm, 500 nm, or 200 nm. Such coatings can have a thickness that is less than about 1000 nm, 800 nm, 500 nm, or 250 nm. Thicker coatings may also be provided.
    Type: Application
    Filed: November 27, 2007
    Publication date: June 3, 2010
    Inventors: Ganta S. Reddy, Jainagesh A. Sekhar
  • Publication number: 20100129157
    Abstract: An apparatus (200, 300, 400) for generating superheated steam capable of reducing or eliminating microorganisms associated with an item (230) includes a gas heater (10) for heating a gas, a steam generator coupled to the gas heater (10) and having a reservoir (216, 304) for supplying water, wherein the heater (10) heats the gas such that when water is combined therewith, a mixture of superheated steam and gas capable of reducing or eliminating microorganisms is discharged from the apparatus (200, 300, 400). The generation of the steam-gas mixture may be done at one atmosphere of pressure and the mixing may be done prior to expelling the fluid from the apparatus (200, 300, 400). The apparatus (400) may be configured as a hand-held device, A method of treating an item (230) for microorganisms includes generating a superheated steam at approximately one atmosphere of pressure, directing a flow of the steam onto the item (230), and reducing or eliminating microorganisms using the steam.
    Type: Application
    Filed: November 14, 2007
    Publication date: May 27, 2010
    Applicant: MICROPYRETICS HEATERS INTERNATIONAL, INC.
    Inventors: Ganta S. Reddy, Ramgopal Vissa, Jainagesh A. Sekhar
  • Publication number: 20090004456
    Abstract: Exemplary materials exhibiting high emissivity and methods for making them are provided. These materials can include a porous coating of small particles provided on a substrate, where the particles can resist sintering and further densification at high temperatures. These materials may be formed by generating an arc using a one-sided electrode apparatus, where particles produced by the arc and electrode can impinge on the substrate and adhere to it. The coating can include predominantly undensified small particles which can have a size less than about 1 ?m. These materials can have an emissivity greater than 0.8 or 0.9. Such materials can be used to form infrared emitters which may provide greater energy efficiency and increased operating lifetime as compared to uncoated emitters. Surfaces coated with small particles may be used in further applications such as catalytic or reactive surfaces, engine components, or acoustical dampening surfaces.
    Type: Application
    Filed: November 7, 2006
    Publication date: January 1, 2009
    Inventors: Ganta S. Reddy, Jainagesh Sekhar
  • Publication number: 20080136069
    Abstract: Even a very small amount of air plasma can reduce the dross during melting. A method and device is shown, whereby substantial saving in the cost of melting aluminum and the energy to melt aluminum is possible by the technique of introducing a small amount of air plasma in the melting environment. In this manner even though the air contains oxygen, and the common practice is presently directed at air being eliminated from the melting environment, an air plasma is able to very effectively be utilized.
    Type: Application
    Filed: October 11, 2007
    Publication date: June 12, 2008
    Applicant: Micropyretics Heaters International, Inc.
    Inventors: Ganta S. Reddy, Jainagesh A. Sekhar