Patents by Inventor Jam-Wem Lee

Jam-Wem Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11961834
    Abstract: A semiconductor device includes a first diode, a second diode, a clamp circuit and a third diode. The first diode is coupled between an input/output (I/O) pad and a first voltage terminal. The second diode is coupled with the first diode, the I/O pad and a second voltage terminal. The clamp circuit is coupled between the first voltage terminal and the second voltage terminal. The second diode and the clamp circuit are configured to direct a first part of an electrostatic discharge (ESD) current flowing between the I/O pad and the first voltage terminal. The third diode, coupled to the first voltage terminal, and the second diode include a first semiconductor structure configured to direct a second part of the ESD current flowing between the I/O pad and the first voltage terminal.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: April 16, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Lin Peng, Li-Wei Chu, Ming-Fu Tsai, Jam-Wem Lee, Yu-Ti Su
  • Publication number: 20240106223
    Abstract: An electrostatic discharge (ESD) protection circuit includes a first and second diode in a semiconductor wafer, an ESD clamp circuit and a first conductive structure on a backside of a semiconductor wafer. The first diode is coupled between an input output (IO) pad and a first node. The second diode is coupled to the first diode, and coupled between the IO pad and a second node. The ESD clamp circuit is in the semiconductor wafer, coupled to the first and second node, and between the first and second diode. The ESD clamp circuit includes a first signal tap region in the semiconductor wafer that is coupled to a reference voltage supply. The second diode is coupled to and configured to share the first signal tap region with the ESD clamp circuit. The first conductive structure is configured to provide a reference voltage to the first signal tap region.
    Type: Application
    Filed: November 24, 2023
    Publication date: March 28, 2024
    Inventors: Yu-Hung YEH, Wun-Jie LIN, Jam-Wem LEE
  • Publication number: 20240096873
    Abstract: Electrostatic discharge (ESD) structures are provided. An ESD structure includes a semiconductor substrate, a first epitaxy region with a first type of conductivity over the semiconductor substrate, a second epitaxy region with a second type of conductivity over the semiconductor substrate, and a plurality of semiconductor layers. The semiconductor layers are stacked over the semiconductor substrate and between the first and second epitaxy regions. A first conductive feature is formed over the first epitaxy region and outside an oxide diffusion region. A second conductive feature is formed over the second epitaxy region and outside the oxide diffusion region. A third conductive feature is formed over the first epitaxy region and within the oxide diffusion region. A fourth conductive feature is formed over the second epitaxy region and within the oxide diffusion region. The oxide diffusion region is disposed between the first and second conductive features.
    Type: Application
    Filed: November 28, 2023
    Publication date: March 21, 2024
    Inventors: Chun-Chia HSU, Tung-Heng HSIEH, Yung-Feng CHANG, Bao-Ru YOUNG, Jam-Wem LEE, Chih-Hung WANG
  • Publication number: 20240088650
    Abstract: In some aspects of the present disclosure, an electrostatic discharge (ESD) protection circuit is disclosed. In some aspects, the ESD protection circuit includes a first transistor coupled to a pad, a second transistor coupled between the first transistor and ground, a stack of transistors coupled to the first transistor, and an ESD clamp coupled between the stack of transistors and the ground.
    Type: Application
    Filed: November 20, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company Ltd.
    Inventors: Li-Wei Chu, Tao Yi Hung, Chia-Hui Chen, Wun-Jie Lin, Jam-Wem Lee
  • Publication number: 20240088137
    Abstract: An electrostatic discharge (ESD) protection apparatus and method for fabricating the same are disclosed herein. In some embodiments, the ESD protection apparatus, comprises: an internal circuit patterned in a device wafer and electrically coupled between a first node and a second node, an array of electrostatic discharge (ESD) circuits patterned in a carrier wafer, where the ESD circuits are electrically coupled between a first node and a second node and configured to protect the internal circuit from transient ESD events, and where the device wafer is bonded to the carrier wafer.
    Type: Application
    Filed: November 18, 2023
    Publication date: March 14, 2024
    Inventors: Tao-Yi HUNG, Wun-Jie LIN, Jam-Wem LEE, Kuo-Ji CHEN
  • Patent number: 11929363
    Abstract: In some embodiments, a semiconductor device is provided, including a first doped region of a first conductivity type configured as a first terminal of a first diode, a second doped region of a second conductivity type configured as a second terminal of the first diode, wherein the first and second doped regions are coupled to a first voltage terminal; a first well of the first conductivity type surrounding the first and second doped regions in a layout view; a third doped region of the first conductivity type configured as a first terminal, coupled to an input/output pad, of a second diode; and a second well of the second conductivity type surrounding the third doped region in the layout view. The second and third doped regions, the first well, and the second well are configured as a first electrostatic discharge path between the I/O pad and the first voltage terminal.
    Type: Grant
    Filed: March 21, 2022
    Date of Patent: March 12, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Lin Peng, Li-Wei Chu, Ming-Fu Tsai, Jam-Wem Lee, Yu-Ti Su
  • Publication number: 20240079408
    Abstract: A method includes the following operations: disconnecting at least one of drain regions that are formed on a first active area, of first transistors, from a first voltage; and disconnecting at least one of drain regions that are formed on a second active area, of second transistors coupled to the first transistors from a second voltage. The at least one of drain regions of the second transistors corresponds to the at least one of drain regions of the first transistors.
    Type: Application
    Filed: November 13, 2023
    Publication date: March 7, 2024
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Feng CHANG, Po-Lin PENG, Jam-Wem LEE
  • Patent number: 11908859
    Abstract: A semiconductor device includes a first to sixth regions, a first gate, a first metal contact and a second metal contact. The second region is disposed opposite to the first region with respect to the first gate. The first metal contact couples the first region to the second region. The fourth region is disposed opposite to the third region with respect to the first gate. The second metal contact is coupling the third region to the fourth region. The fifth region is disposed between the first gate and the second region, and is disconnected from the first metal contact and the second metal contact. The sixth region is disposed between the first gate and the first region, and is disconnected from the first metal contact and the second metal contact.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: February 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Feng Chang, Po-Lin Peng, Jam-Wem Lee
  • Publication number: 20240047453
    Abstract: A method of making a semiconductor device includes manufacturing doped zones in a first semiconductor material over a substrate. The method further includes forming an isolation structure between adjacent doped zones of the first semiconductor material. The method further includes manufacturing lines extending in a first direction over the doped zones of the first semiconductor material, wherein each of the lines has a line width measured along a second direction perpendicular to the first direction. The method further includes trimming the lines into line segments having ends over the isolation structure. The method further includes etching a transistor gate electrode over the substrate, wherein transistor gate electrode has a gate electrode width measured along the second direction, and wherein the line width is substantially similar to the gate electrode width.
    Type: Application
    Filed: October 18, 2023
    Publication date: February 8, 2024
    Inventors: Li-Wei CHU, Wun-Jie LIN, Yu-Ti SU, Ming-Fu TSAI, Jam-Wem LEE
  • Publication number: 20240021603
    Abstract: Systems and methods for protecting a device from an electrostatic discharge (ESD) event are provided. A resistor-capacitor (RC) trigger circuit and a driver circuit are provided. The RC trigger circuit is configured to provide an ESD protection signal to the driver circuit. A discharge circuit includes a first metal oxide semiconductor (MOS) transistor and a second MOS transistor connected in series between a first voltage potential and a second voltage potential. The driver circuit provides one or more signals for turning the first and second MOS transistors on and off.
    Type: Application
    Filed: July 26, 2023
    Publication date: January 18, 2024
    Inventors: Shu-Yu Su, Jam-Wem Lee, Wun-Jie Lin
  • Patent number: 11862968
    Abstract: In some aspects of the present disclosure, an electrostatic discharge (ESD) protection circuit is disclosed. In some aspects, the ESD protection circuit includes a first transistor coupled to a pad, a second transistor coupled between the first transistor and ground, a stack of transistors coupled to the first transistor, and an ESD clamp coupled between the stack of transistors and the ground.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: January 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Li-Wei Chu, Tao Yi Hung, Chia-Hui Chen, Wun-Jie Lin, Jam-Wem Lee
  • Patent number: 11862960
    Abstract: An electrostatic discharge (ESD) protection circuit includes a first diode, a second diode, an ESD clamp circuit and a first conductive structure on a backside of a semiconductor wafer, and being coupled to the first voltage supply. The first diode is in the semiconductor wafer, and coupled between an IO pad and a first node. The second diode is in the semiconductor wafer, coupled to the first diode and coupled between the IO pad and a second node. The ESD clamp circuit is in the semiconductor wafer, coupled between the first node and the second node, and further coupled to the first and second diode. The ESD clamp circuit includes a first signal tap region in the semiconductor wafer that is coupled to a first voltage supply. The first diode is coupled to and configured to share the first signal tap region with the ESD clamp circuit.
    Type: Grant
    Filed: March 30, 2023
    Date of Patent: January 2, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yu-Hung Yeh, Wun-Jie Lin, Jam-Wem Lee
  • Patent number: 11855088
    Abstract: A method includes the following operations: disconnecting at least one of drain regions that are formed on a first active area, of first transistors, from a first voltage; and disconnecting at least one of drain regions that are formed on a second active area, of second transistors coupled to the first transistors from a second voltage. The at least one of drain regions of the second transistors corresponds to the at least one of drain regions of the first transistors.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Feng Chang, Po-Lin Peng, Jam-Wem Lee
  • Patent number: 11855073
    Abstract: Electrostatic discharge (ESD) structures are provided. An ESD structure includes a semiconductor substrate, a first epitaxy region with a first type of conductivity over the semiconductor substrate, a second epitaxy region with a second type of conductivity over the semiconductor substrate, and a plurality of first semiconductor layers and a plurality of second semiconductor layers. The first and second semiconductor layers are alternatingly stacked over the semiconductor substrate and between the first and second epitaxy regions. A first conductive feature is formed over the first epitaxy region and outside an oxide diffusion region. A second conductive feature is formed over the second epitaxy region and outside the oxide diffusion region. The oxide diffusion region is disposed between the first and second conductive features.
    Type: Grant
    Filed: September 30, 2022
    Date of Patent: December 26, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chun-Chia Hsu, Tung-Heng Hsieh, Yung-Feng Chang, Bao-Ru Young, Jam-Wem Lee, Chih-Hung Wang
  • Patent number: 11855076
    Abstract: An electrostatic discharge (ESD) protection apparatus and method for fabricating the same are disclosed herein. In some embodiments, the ESD protection apparatus, comprises: an internal circuit patterned in a device wafer and electrically coupled between a first node and a second node, an array of electrostatic discharge (ESD) circuits patterned in a carrier wafer, where the ESD circuits are electrically coupled between a first node and a second node and configured to protect the internal circuit from transient ESD events, and where the device wafer is bonded to the carrier wafer.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tao-Yi Hung, Wun-Jie Lin, Jam-Wem Lee, Kuo-Ji Chen
  • Publication number: 20230411381
    Abstract: A semiconductor device includes a substrate. The semiconductor device further includes a doped well in the substrate, wherein the doped well comprises a first concentration of dopants of a first type in the substrate. The semiconductor device further includes a doped region in the substrate, wherein the doped region comprises a second concentration of the dopants of the first type, the doped region extends around the doped well, and the doped region is electrically insulated from the doped well. The semiconductor device further includes an active area, and wherein the active area comprises an emitter region and a collector region, wherein the emitter region is electrically connected to the doped region. The semiconductor device further includes a deep trench isolation (DTI) structure extending through the active area and between the emitter region and the collector region.
    Type: Application
    Filed: July 27, 2023
    Publication date: December 21, 2023
    Inventors: Tzu-Hao CHIANG, Wun-Jie LIN, Jam-Wem LEE
  • Publication number: 20230395534
    Abstract: An electrostatic discharge (ESD) protection apparatus and method for fabricating the same are disclosed herein. In some embodiments, the ESD protection apparatus comprises: an internal circuit formed in a first wafer; an array of electrostatic discharge (ESD) circuits formed in a second wafer, wherein the ESD circuits include a plurality of ESD protection devices each coupled to a corresponding switch and configured to protect the internal circuit from a transient ESD event; and a switch controller in the second wafer, wherein the switch controller is configured to control, based on a control signal from the first wafer, each of the plurality of ESD protection devices to be activated or deactivated by the corresponding switch, and wherein the first wafer is bonded to the second wafer.
    Type: Application
    Filed: August 10, 2023
    Publication date: December 7, 2023
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tao-Yi HUNG, Wun-Jie Lin, Jam-Wem Lee, Kuo-Ji Chen
  • Patent number: 11837598
    Abstract: A semiconductor device includes a first doped zone and a second doped zone in a first semiconductor material, the first doped zone being separated from the second doped zone; an isolation structure between the first doped zone and the second doped zone; and a first line segment over a top surface of the first doped zone, where the ends of the first line segment and the ends of the second line are over the isolation structure. The first line segment and the second line segment have a first width; and a dielectric material is between the first line segment and the second line segment and over the isolation structure. The first width is substantially similar to a width of a gate electrode in the semiconductor device.
    Type: Grant
    Filed: August 27, 2021
    Date of Patent: December 5, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Li-Wei Chu, Wun-Jie Lin, Yu-Ti Su, Ming-Fu Tsai, Jam-Wem Lee
  • Patent number: 11817403
    Abstract: An electrostatic discharge (ESD) protection apparatus and method for fabricating the same are disclosed herein. In some embodiments, the ESD protection apparatus comprises: an internal circuit formed in a first wafer; an array of electrostatic discharge (ESD) circuits formed in a second wafer, wherein the ESD circuits include a plurality of ESD protection devices each coupled to a corresponding switch and configured to protect the internal circuit from a transient ESD event; and a switch controller in the second wafer, wherein the switch controller is configured to control, based on a control signal from the first wafer, each of the plurality of ESD protection devices to be activated or deactivated by the corresponding switch, and wherein the first wafer is bonded to the second wafer.
    Type: Grant
    Filed: March 11, 2021
    Date of Patent: November 14, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tao-Yi Hung, Wun-Jie Lin, Jam-Wem Lee, Kuo-Ji Chen
  • Publication number: 20230361117
    Abstract: The present disclosure provides embodiments of semiconductor devices. A semiconductor device according to the present disclosure include an elongated semiconductor member surrounded by an isolation feature and extending lengthwise along a first direction, a first source/drain feature and a second source/drain feature over a top surface of the elongated semiconductor member, a vertical stack of channel members each extending lengthwise between the first source/drain feature and the second source/drain feature along the first direction, a gate structure wrapping around each of the channel members, an epitaxial layer deposited on the bottom surface of the elongated semiconductor member, a silicide layer disposed on the epitaxial layer, and a conductive layer disposed on the silicide layer.
    Type: Application
    Filed: July 21, 2023
    Publication date: November 9, 2023
    Inventors: Yu-Xuan Huang, Ching-Wei Tsai, Jam-Wem Lee, Kuo-Ji Chen, Kuan-Lun Cheng