Patents by Inventor James A. Culp

James A. Culp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130238263
    Abstract: Impact on parametric performance of physical design choices for transistors is scored for on-current and off-current of the transistors. The impact of the design parameters are incorporated into parameters that measure predicted shift in mean on-current and mean off-current and parameters that measure predicted increase in deviations in the distribution of on-current and the off-current. Statistics may be taken at a cell level, a block level, or a chip level to optimize a chip design in a design phase, or to predict changes in parametric yield during manufacturing or after a depressed parametric yield is observed. Further, parametric yield and current level may be predicted region by region and compared with observed thermal emission to pinpoint any anomaly region in a chip to facilitate detection and correction in any mistakes in chip design.
    Type: Application
    Filed: April 22, 2013
    Publication date: September 12, 2013
    Applicant: Mentor Graphics Corporation
    Inventors: James A. Culp, Paul Chang, Dureseti Chidambarrao, Praveen Elakkumanan, Jason Hibbeler, Anda C. Mocuta
  • Patent number: 8473885
    Abstract: A design system for designing complex integrated circuits (ICs), a method of IC design and program product therefor. A layout unit receives a circuit description representing portions in a grid and glyph format. A checking unit checks grid and glyph portions of the design. An elaboration unit generates a target layout from the checked design. A data prep unit prepares the target layout for mask making. A pattern caching unit selectively replaces portions of the design with previously cached results for improved design efficiency.
    Type: Grant
    Filed: March 7, 2012
    Date of Patent: June 25, 2013
    Assignee: International Business Machines Corporation
    Inventors: John M. Cohn, James A. Culp, Ulrich A. Finkler, Fook-Luen Heng, Mark A. Lavin, Jin Fuw Lee, Lars W. Liebmann, Gregory A. Northrop, Nakgeuon Seong, Rama N. Singh, Leon Stok, Pieter J. Woeltgens
  • Patent number: 8470713
    Abstract: A method of forming dielectric spacers including providing a substrate comprising a first region having a first plurality of gate structures and a second region having a second plurality of gate structures and at least one oxide containing material or a carbon containing material. Forming a nitride containing layer over the first region having a thickness that is less than the thickness of the nitride containing layer that is present in the second region. Forming dielectric spacers from the nitride containing layer on the first plurality the second plurality of gate structures. The at least one oxide containing material or carbon containing material accelerates etching in the second region so that the thickness of the dielectric spacers in the first region is substantially equal to the thickness of the dielectric spacers in the second region of the substrate.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: June 25, 2013
    Assignee: International Business Machines Corporation
    Inventors: James A. Culp, John J. Ellis-Monaghan, Jeffrey P. Gambino, Kirk D. Peterson, Jed H. Rankin, Christa R. Willets
  • Patent number: 8458625
    Abstract: Potential lithographic hot spots associated with a lithographic level are marked by a marker layer identifying a marked region. Multiplicate layers are generated for each design shape in that lithographic level in each marked region. Each multiplicate layer includes a different type of variant for each design shape in the lithographic level. The different types of variants correspond to different design environments. Lithographic simulation is performed with each type of variants under the constraint of long range effects, such as pattern density, provided by adjacent shapes in the lithographic level. In each marked region, the results of lithographic simulations are evaluated to determine an optimal type among the variants. The optimal type is retained for the lithographic level in each marked region, thereby providing a chip design layout in which various marked regions can include different types of variant shapes to provide local lithographic optimization.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: June 4, 2013
    Assignee: International Business Machines Corporation
    Inventors: Pavan Y. Bashaboina, James A. Culp
  • Patent number: 8429576
    Abstract: Impact on parametric performance of physical design choices for transistors is scored for on-current and off-current of the transistors. The impact of the design parameters are incorporated into parameters that measure predicted shift in mean on-current and mean off-current and parameters that measure predicted increase in deviations in the distribution of on-current and the off-current. Statistics may be taken at a cell level, a block level, or a chip level to optimize a chip design in a design phase, or to predict changes in parametric yield during manufacturing or after a depressed parametric yield is observed. Further, parametric yield and current level may be predicted region by region and compared with observed thermal emission to pinpoint any anomaly region in a chip to facilitate detection and correction in any mistakes in chip design.
    Type: Grant
    Filed: May 15, 2012
    Date of Patent: April 23, 2013
    Assignee: Mentor Graphics Corporation
    Inventors: James A. Culp, Paul Chang, Dureseti Chidambarrao, Praveen Elakkumanan, Jason Hibbeler, Anda C. Mocuta
  • Patent number: 8418087
    Abstract: A method for implementing systematic, variation-aware integrated circuit extraction includes inputting a set of processing conditions to a plurality of variation models, each model corresponding to a separate systematic, parametric variation associated with semiconductor manufacturing of an integrated circuit layout; generating, for each variation model, a netlist update attributable to the associated variation, wherein the netlist update is an update with respect to an original netlist extracted from the integrated circuit layout; and storing the netlist updates generated for each of the processing conditions.
    Type: Grant
    Filed: February 13, 2012
    Date of Patent: April 9, 2013
    Assignee: International Business Machines Corporation
    Inventors: Shayak Banerjee, Dureseti Chidambarrao, James A. Culp, Praveen Elakkumanan, Saibal Mukhopadhyay
  • Patent number: 8381141
    Abstract: A set of optical rule checker (ORC) markers are identified in a simulated lithographic pattern generated for a set of data preparation parameters and lithographic processing conditions. Each ORC marker identifies a feature in the simulated lithographic pattern that violates rules of the ORC. A centerline is defined in each ORC marker, and a minimum dimension region is generated around each centerline with a minimum width that complies with the rules of the ORC. A failure region is defined around each ORC marker by removing regions that overlap with the ORC marker from the minimum dimension region. The areas of all failure regions are added to define a figure of demerit, which characterizes the simulated lithographic pattern. The figure of demerit can be evaluated for multiple simulated lithographic patterns or iteratively decreased by modifying the set of data preparation parameters and lithographic processing conditions.
    Type: Grant
    Filed: October 28, 2010
    Date of Patent: February 19, 2013
    Assignee: International Business Machines Corporation
    Inventors: Stephen E. Fischer, James A. Culp, Robert T. Sayah
  • Publication number: 20130031519
    Abstract: Potential lithographic hot spots associated with a lithographic level are marked by a marker layer identifying a marked region. Multiplicate layers are generated for each design shape in that lithographic level in each marked region. Each multiplicate layer includes a different type of variant for each design shape in the lithographic level. The different types of variants correspond to different design environments. Lithographic simulation is performed with each type of variants under the constraint of long range effects, such as pattern density, provided by adjacent shapes in the lithographic level. In each marked region, the results of lithographic simulations are evaluated to determine an optimal type among the variants. The optimal type is retained for the lithographic level in each marked region, thereby providing a chip design layout in which various marked regions can include different types of variant shapes to provide local lithographic optimization.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Pavan Y. Bashaboina, James A. Culp
  • Patent number: 8347259
    Abstract: Critical circuit blocks are identified in a chip design layout, and are marked by a marker layer identifying a marked region. Multiplicate layers are generated for each critical circuit block within each marked region. Each multiplicate layer includes a different type of variant for each identified critical circuit block. The different types of variants correspond to different types of optimization goals to address different issues in circuit performance. Circuit simulation is performed with each type of variants in combination with adjacent circuit blocks as provided in original design. In each marked region, the results of the circuit simulations are evaluated to determine an optimal type among the variants. The optimal type is retained in each marked region, thereby providing a chip design layout in which various marked regions can include different types of variant circuit blocks to provide local circuit optimization.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: January 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: Pavan Y. Bashaboina, James A. Culp
  • Patent number: 8347260
    Abstract: Disclose are embodiments of an integrated circuit design method based on a combination of manufacturability, test coverage and, optionally, diagnostic coverage. Design-for manufacturability (DFM) modifications to the layout of an integrated circuit can be made in light of test coverage. Alternatively, test coverage of an integrated circuit can be established in light of DFM modifications. Alternatively, an iterative process can be performed, where DFM modifications to the layout of an integrated circuit are made in light of test coverage and then test coverage is altered in light of the DFM modifications. Alternatively, DFM modifications to the layout of an integrated circuit can be made in light of test coverage and also diagnostic coverage. In any case, after making DFM modifications and establishing test coverage, any unmodified and untested nodes (and, optionally, any unmodified and undiagnosable tested nodes) in the integrated circuit can be identified and tagged for subsequent in-line inspection.
    Type: Grant
    Filed: September 13, 2010
    Date of Patent: January 1, 2013
    Assignee: International Business Machines Corporation
    Inventors: Kerry Bernstein, James A. Culp, Leah M. P. Pastel, Kirk D. Peterson, Norman J. Rohrer
  • Patent number: 8336008
    Abstract: Mechanisms are provided for characterizing long range variability in integrated circuit manufacturing. A model derivation component tests one or more density pattern samples, which are a fabricated integrated circuits having predetermined pattern densities and careful placement of current-voltage (I-V) sensors. The model derivation component generates one or more empirical models to establish range of influence of long range variability effects in the density pattern sample. A variability analysis component receives an integrated circuit design and, using the one or more empirical models, analyzes the integrated circuit design to isolate possible long range variability effects in the integrated circuit design.
    Type: Grant
    Filed: September 29, 2009
    Date of Patent: December 18, 2012
    Assignee: International Business Machines Corporation
    Inventors: James A. Culp, Jerry D. Hayes, Ying Liu, Anthony D. Polson
  • Patent number: 8302068
    Abstract: The present invention provides a method and computer program product for designing an on-wafer target for use by a model-based design tool such as OPC or OPC verification. The on-wafer target is modified by modifying a critical dimension so as to improve or optimize an electrical characteristic, while also ensuring that one or more yield constraints are satisfied. The use of an electrically optimized target can result in cost-effective mask designs that better meet the designers' intent.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: James A. Culp, Lars W. Liebmann
  • Patent number: 8301290
    Abstract: Disclosed are a system and a method of correcting systematic, design-based, parametric variations on integrated circuit chips to minimize circuit limited yield loss. Processing information and a map of a chip are stored. The processing information can indicate an impact, on a given device parameter, of changes in a value for a specification associated with a given process step. The map can indicate regional variations in the device parameter (e.g., threshold voltage). Based on the processing information and using the map as a guide, different values for the specification are determined, each to be applied in a different region of the integrated circuit chip during the process step in order to offset the mapped regional parametric variations. A process tool can then be selectively controlled to ensure that during chip manufacturing the process step is performed accordingly and, thereby to ensure that the regional parametric variations are minimized.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: James A. Culp, John J. Ellis-Monaghan, Jeffrey P. Gambino, Kirk D. Peterson, Jed H. Rankin
  • Publication number: 20120227019
    Abstract: Impact on parametric performance of physical design choices for transistors is scored for on-current and off-current of the transistors. The impact of the design parameters are incorporated into parameters that measure predicted shift in mean on-current and mean off-current and parameters that measure predicted increase in deviations in the distribution of on-current and the off-current. Statistics may be taken at a cell level, a block level, or a chip level to optimize a chip design in a design phase, or to predict changes in parametric yield during manufacturing or after a depressed parametric yield is observed. Further, parametric yield and current level may be predicted region by region and compared with observed thermal emission to pinpoint any anomaly region in a chip to facilitate detection and correction in any mistakes in chip design.
    Type: Application
    Filed: May 15, 2012
    Publication date: September 6, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James A. Culp, Paul Chang, Dureseti Chidambarrao, Praveen Elakkumanan, Jason Hibbeler, Anda C. Mocuta
  • Patent number: 8239790
    Abstract: Impact on parametric performance of physical design choices for transistors is scored for on-current and off-current of the transistors. The impact of the design parameters are incorporated into parameters that measure predicted shift in mean on-current and mean off-current and parameters that measure predicted increase in deviations in the distribution of on-current and the off-current. Statistics may be taken at a cell level, a block level, or a chip level to optimize a chip design in a design phase, or to predict changes in parametric yield during manufacturing or after a depressed parametric yield is observed. Further, parametric yield and current level may be predicted region by region and compared with observed thermal emission to pinpoint any anomaly region in a chip to facilitate detection and correction in any mistakes in chip design.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: August 7, 2012
    Assignee: International Business Machines Corporation
    Inventors: James A. Culp, Paul Chang, Dureseti Chidambarrao, Praveen Elakkumanan, Jason Hibbeler, Anda C. Mocuta
  • Patent number: 8232215
    Abstract: A method for forming a plurality of variable linewidth spacers adjoining a plurality of uniformly spaced topographic features uses a conformal resist layer upon a spacer material layer located over the plurality of uniformly spaced topographic features. The conformal resist layer is differentially exposed and developed to provide a differential thickness resist layer that is used as a sacrificial mask when forming the variable linewidth spacers. A method for forming uniform linewidth spacers adjoining narrowly spaced topographic features and widely spaced topographic features over the same substrate uses a masked isotropic etching of a variable thickness spacer material layer to provide a more uniform partially etched spacer material layer, followed by an unmasked anisotropic etching of the partially etched spacer material layer. A related method for forming the uniform linewidth spacers uses a two-step anisotropic etch method that includes at least one masking process step.
    Type: Grant
    Filed: November 20, 2009
    Date of Patent: July 31, 2012
    Assignee: International Business Machines Corporation
    Inventors: James A. Culp, Jeffrey P. Gambino, John J. Ellis-Monaghan, Kirk D. Peterson, Jed H. Rankin
  • Patent number: 8219943
    Abstract: A design system for designing complex integrated circuits (ICs), a method of IC design and program product therefor. A layout unit receives a circuit description representing portions in a grid and glyph format. A checking unit checks grid and glyph portions of the design. An elaboration unit generates a target layout from the checked design. A data prep unit prepares the target layout for mask making. A pattern caching unit selectively replaces portions of the design with previously cached results for improved design efficiency.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: July 10, 2012
    Assignee: International Business Machines Corporation
    Inventors: John M Cohn, James A. Culp, Ulrich A. Finkler, Fook-Luen Heng, Mark A. Lavin, Jin Fuw Lee, Lars W. Liebmann, Gregory A. Northrop, Nakgeuon Seong, Rama N. Singh, Leon Stok, Pieter J. Woeltgens
  • Patent number: 8214770
    Abstract: A method is provided for designing a mask layout for an integrated circuit that ensures proper functional interaction among circuit features by including functional inter-layer and intra-layer constraints on the wafer. The functional constraints used according to the present invention are applied among the simulated wafer images to ensure proper functional interaction, while relaxing or eliminating the EPE constraints on the location of the wafer images.
    Type: Grant
    Filed: January 22, 2009
    Date of Patent: July 3, 2012
    Assignee: International Business Machines Corporation
    Inventors: Maharaj Mukherjee, James A. Culp, Lars Liebmann, Scott M. Mansfield
  • Publication number: 20120167029
    Abstract: A design system for designing complex integrated circuits (ICs), a method of IC design and program product therefor. A layout unit receives a circuit description representing portions in a grid and glyph format. A checking unit checks grid and glyph portions of the design. An elaboration unit generates a target layout from the checked design. A data prep unit prepares the target layout for mask making. A pattern caching unit selectively replaces portions of the design with previously cached results for improved design efficiency.
    Type: Application
    Filed: March 7, 2012
    Publication date: June 28, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: John M. Cohn, James A. Culp, Ulrich A. Finkler, Fook-Luen Heng, Mark A. Lavin, Jin Fuw Lee, Lars W. Liebmann, Gregory A. Northrop, Nakgeuon Seong, Rama N. Singh, Leon Stok, Pieter J. Woltgens
  • Publication number: 20120149200
    Abstract: A method of forming dielectric spacers including providing a substrate comprising a first region having a first plurality of gate structures and a second region having a second plurality of gate structures and at least one oxide containing material or a carbon containing material. Forming a nitride containing layer over the first region having a thickness that is less than the thickness of the nitride containing layer that is present in the second region. Forming dielectric spacers from the nitride containing layer on the first plurality the second plurality of gate structures. The at least one oxide containing material or carbon containing material accelerates etching in the second region so that the thickness of the dielectric spacers in the first region is substantially equal to the thickness of the dielectric spacers in the second region of the substrate.
    Type: Application
    Filed: December 13, 2010
    Publication date: June 14, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James A. Culp, John J. Ellis-Monaghan, Jeffrey P. Gambino, Kirk D. Peterson, Jed H. Rankin, Christa R. Willets