Patents by Inventor James A. DEMUTH

James A. DEMUTH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230302729
    Abstract: A manipulator device such as a robot arm that is capable of increasing manufacturing throughput for additively manufactured parts, and allows for the manipulation of parts that would be difficult or impossible for a human to move is described. The manipulator can grasp various permanent or temporary additively manufactured manipulation points on a part to enable repositioning or maneuvering of the part.
    Type: Application
    Filed: May 15, 2023
    Publication date: September 28, 2023
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshard, Heiner Fees, Eugene Berdichevsky
  • Patent number: 11745425
    Abstract: A method of additive manufacture is disclosed. The method may include restricting, by an enclosure, an exchange of gaseous matter between an interior of the enclosure and an exterior of the enclosure. The method may further include running multiple machines within the enclosure. Each of the machines may execute its own process of additive manufacture. While the machines are running, a gas management system may maintain gaseous oxygen within the enclosure at or below a limiting oxygen concentration for the interior.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: September 5, 2023
    Assignee: Seurat Technologies, Inc.
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Patent number: 11738505
    Abstract: An additive manufacturing system includes at least two photoconductor plates attached to a substrate. Each photoconductor plate can include separate the Linear Electro layers and transparent conductive oxide layers.
    Type: Grant
    Filed: October 28, 2021
    Date of Patent: August 29, 2023
    Assignee: Seurat Technologies, Inc.
    Inventors: Francis L. Leard, James A. DeMuth, Andrew J. Bayramian, Drew W. Kissinger, Joseph Gillespie
  • Patent number: 11724455
    Abstract: An apparatus and a method for powder bed fusion additive manufacturing involve a multiple-chamber design achieving a high efficiency and throughput. The multiple-chamber design features concurrent printing of one or more print jobs inside one or more build chambers, side removals of printed objects from build chambers allowing quick exchanges of powdered materials, and capabilities of elevated process temperature controls of build chambers and post processing heat treatments of printed objects. The multiple-chamber design also includes a height-adjustable optical assembly in combination with a fixed build platform method suitable for large and heavy printed objects. A side removal mechanism of the build chambers of the apparatus improves handling and efficiency for printing large and heavy objects. Use of a wide range of sensors in the apparatus and by the method allows various feedback to improve quality, manufacturing throughput, and energy efficiency.
    Type: Grant
    Filed: March 5, 2021
    Date of Patent: August 15, 2023
    Assignee: SEURAT TECHNOLOGIES, INC.
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Patent number: 11718568
    Abstract: An additive manufacturing system including a two-dimensional energy patterning system for imaging a powder bed is disclosed. The two-dimensional energy patterning system may be used to control a state of matter of each successive additive layer. Accordingly, the system may be used to alter the chemical bond arrangement of the material forming the various additive layers.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: August 8, 2023
    Assignee: Seurat Technologies, Inc.
    Inventors: James A. DeMuth, Erik Toomre
  • Patent number: 11701819
    Abstract: An additive manufacturing system including a two-dimensional energy patterning system for imaging a powder bed is disclosed. The two-dimensional energy patterning system may be used to control the rate of cooling experienced by each successive additive layer. Accordingly, the system may be used to heat treat the various additive layers.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: July 18, 2023
    Assignee: Seurat Technologies, Inc.
    Inventors: James A. DeMuth, Erik Toomre, Martin Eberhard
  • Patent number: 11691341
    Abstract: A manipulator device such as a robot arm that is capable of increasing manufacturing throughput for additively manufactured parts, and allows for the manipulation of parts that would be difficult or impossible for a human to move is described. The manipulator can grasp various permanent or temporary additively manufactured manipulation points on a part to enable repositioning or maneuvering of the part.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: July 4, 2023
    Assignee: Seurat Technologies, Inc.
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Patent number: 11666971
    Abstract: An additive manufacturing system including a two-dimensional energy patterning system for imaging a powder bed is disclosed. Improved structure formation, part creation and manipulation, use of multiple additive manufacturing systems, and high throughput manufacturing methods suitable for automated or semi-automated factories are also disclosed.
    Type: Grant
    Filed: February 13, 2020
    Date of Patent: June 6, 2023
    Assignee: Seurat Technologies, Inc.
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20230158616
    Abstract: A method and an apparatus for collecting powder samples in real-time in powder bed fusion additive manufacturing may involves an ingester system for in-process collection and characterizations of powder samples. The collection may be performed periodically and uses the results of characterizations for adjustments in the powder bed fusion process. The ingester system of the present disclosure is capable of packaging powder samples collected in real-time into storage containers serving a multitude purposes of audit, process adjustments or actions.
    Type: Application
    Filed: January 17, 2023
    Publication date: May 25, 2023
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Patent number: 11656511
    Abstract: An apparatus with first and second transparent conductive oxide layers is described. A photoconductive layer can be positioned between the first and a second transparent conductive oxide layers. The photoconductive layer can be a crystalline layer that can include bismuth silicate or other suitable materials. An electro-optical layer is positioned in contact with the photoconductive layer. In some embodiments the photoconductive layer is positionable to receive a write beam that defines a two-dimensional spatial pattern.
    Type: Grant
    Filed: October 20, 2021
    Date of Patent: May 23, 2023
    Assignee: Seurat Technologies, Inc.
    Inventors: Francis L. Leard, James A. DeMuth, Andrew J. Bayramian, Drew W. Kissinger, Ning Duanmu, Kourosh Kamshad
  • Publication number: 20230134032
    Abstract: An additive manufacturing system includes a high power laser to form a high fluence laser beam. A 2D patternable light valve having a structure responsive to electron emission is positioned to receive and pattern light received from the high power laser.
    Type: Application
    Filed: October 28, 2021
    Publication date: May 4, 2023
    Inventors: Francis L. Leard, James A. DeMuth, Andrew J. Bayramian, Susanne Kras, William H. Clauson, Craig Garvin, Matthew Murachver
  • Publication number: 20230123528
    Abstract: The present disclosure relates to a system for performing an Additive Manufacturing (AM) fabrication process on a powdered material, deposited as a powder bed and forming a substrate. The system makes use of a laser for generating a laser beam, and an optical subsystem. The optical subsystem is configured to receive the laser beam and to generate an optical signal comprised of electromagnetic radiation sufficient to melt or sinter the powdered material. The optical subsystem uses a digitally controlled mask configured to pattern the optical signal as needed to melt select portions of a layer of the powdered material to form a layer of a 3D part. A power supply and at least one processor are also included for generating a plurality of different power density levels selectable based on a specific material composition, absorptivity and diameter of the powder particles, and a known thickness of the powder bed. The powdered material is used to form the 3D part in a sequential layer-by-layer process.
    Type: Application
    Filed: October 20, 2022
    Publication date: April 20, 2023
    Inventors: Bassem S. EL-DASHER, Andrew J. BAYRAMIAN, James A. DEMUTH, Joseph C. FARMER, Sharon G. TORRES
  • Publication number: 20230085638
    Abstract: A method of additive manufacture is disclosed. The method may include providing a powder bed and directing a shaped laser beam pulse train consisting of one or more pulses and having a flux greater than 20 kW/cm2 at a defined two dimensional region of the powder bed. This minimizes adverse laser plasma effects during the process of melting and fusing powder within the defined two dimensional region.
    Type: Application
    Filed: November 16, 2022
    Publication date: March 23, 2023
    Inventors: Andrew J. Bayramian, James A. DeMuth, Ning Duanmu, Yiyu Shen
  • Publication number: 20230079006
    Abstract: A method of additive manufacture suitable for large and high resolution structures is disclosed. The method may include sequentially advancing each portion of a continuous part in the longitudinal direction from a first zone to a second zone. In the first zone, selected granules of a granular material may be amalgamated. In the second zone, unamalgamated granules of the granular material may be removed. The method may further include advancing a first portion of the continuous part from the second zone to a third zone while (1) a last portion of the continuous part is formed within the first zone and (2) the first portion is maintained in the same position in the lateral and transverse directions that the first portion occupied within the first zone and the second zone.
    Type: Application
    Filed: November 16, 2022
    Publication date: March 16, 2023
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20230076771
    Abstract: The present disclosure relates to an apparatus for additively manufacturing a product in a layer-by-layer sequence, wherein the product is formed using powder particles deposited on an interface layer of a substrate. A laser generates first and second beam components. The second beam component has a higher power level and a shorter duration than the first beam component. A mask creates a 2D optical pattern in which only select portions of the second beam components can irradiate the powder particles. The first beam component heats the powder particles close to a melting point, where the particles experience surface tension forces relative to the interface layer. While the particles are heated, the second beam component further heats the particles and also melts the interface layer before the surface tension forces can act on and distort the particles, enabling the particles and the interface layer are able to bond together.
    Type: Application
    Filed: November 10, 2022
    Publication date: March 9, 2023
    Inventors: James A. DEMUTH, Andrew J. BAYRAMIAN, Eric B. DUOSS, Joshua D. KUNTZ, Christopher SPADACCINI
  • Publication number: 20230061317
    Abstract: A method of additive manufacture is disclosed. The method may include creating, by a 3D printer contained within an enclosure, a part having a weight greater than or equal to 2,000 kilograms. A gas management system may maintain gaseous oxygen within the enclosure atmospheric level. In some embodiments, a wheeled vehicle may transport the part from inside the enclosure, through an airlock, as the airlock operates to buffer between a gaseous environment within the enclosure and a gaseous environment outside the enclosure, and to a location exterior to both the enclosure and the airlock.
    Type: Application
    Filed: November 7, 2022
    Publication date: March 2, 2023
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Patent number: 11577347
    Abstract: A method and an apparatus for collecting powder samples in real-time in powder bed fusion additive manufacturing may involves an ingester system for in-process collection and characterizations of powder samples. The collection may be performed periodically and uses the results of characterizations for adjustments in the powder bed fusion process. The ingester system of the present disclosure is capable of packaging powder samples collected in real-time into storage containers serving a multitude purposes of audit, process adjustments or actions.
    Type: Grant
    Filed: April 12, 2022
    Date of Patent: February 14, 2023
    Assignee: Seurat Technologies, Inc.
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20230026951
    Abstract: An additive manufacturing system can include at least one laser source and a speckle reduction system that receives light from the at least one laser source. The speckle reduction system provides laser light to an optical homogenizer that increases uniformity of laser light and can provide the light to an area patterning system.
    Type: Application
    Filed: July 26, 2022
    Publication date: January 26, 2023
    Inventors: Jeffrey Jarboe, Andrew J. Bayramian, James A. DeMuth, Francis L. Leard, Yiyu Shen
  • Publication number: 20230014858
    Abstract: A print engine of an additive manufacturing system includes a print station configured to hold a removable cartridge containing powder. A laser engine is positioned to direct a one or two dimensional patterned laser beam into the removable cartridge. In some embodiments powder is produced at least in part with a magnetohydrodynamic system.
    Type: Application
    Filed: July 11, 2022
    Publication date: January 19, 2023
    Inventors: James A. DeMuth, Francis L. Leard, Drew W. Kissinger, Cote Leblanc, Craig Garvin
  • Patent number: 11548101
    Abstract: A method of additive manufacture suitable for large and high resolution structures is disclosed. The method may include sequentially advancing each portion of a continuous part in the longitudinal direction from a first zone to a second zone. In the first zone, selected granules of a granular material may be amalgamated. In the second zone, unamalgamated granules of the granular material may be removed. The method may further include advancing a first portion of the continuous part from the second zone to a third zone while (1) a last portion of the continuous part is formed within the first zone and (2) the first portion is maintained in the same position in the lateral and transverse directions that the first portion occupied within the first zone and the second zone.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: January 10, 2023
    Assignee: Seurat Technologies, Inc.
    Inventors: James A DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky