Patents by Inventor James A. DEMUTH

James A. DEMUTH has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210053280
    Abstract: A method and an apparatus involve applying a pattern on an addressable patternable cathode unit. The cathode unit is stimulated to emit an electron beam pattern. A patterned image in the electron beam pattern is positioned to a desired position such directly to as a powder bed for additive manufacturing or to an electron beam addressed light valve for controlling spatial patterns on an optical signal for powder bed manufacturing.
    Type: Application
    Filed: November 6, 2020
    Publication date: February 25, 2021
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20210031267
    Abstract: A method of additive manufacture is disclosed. The method may include creating, by a 3D printer contained within an enclosure, a part having a weight greater than or equal to 2,000 kilograms. A gas management system may maintain gaseous oxygen within the enclosure atmospheric level. In some embodiments, a wheeled vehicle may transport the part from inside the enclosure, through an airlock, as the airlock operates to buffer between a gaseous environment within the enclosure and a gaseous environment outside the enclosure, and to a location exterior to both the enclosure and the airlock.
    Type: Application
    Filed: October 21, 2020
    Publication date: February 4, 2021
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Patent number: 10898954
    Abstract: The present disclosure relates to a method of producing a product through additive manufacturing with heat treatment. The method involves using a fusing beam to melt powder particles disposed on a substrate, where the fusing beam is impressed with a two dimensional pattern containing image information from a first layer to be printed. The fused powder particles are then heat treated with a beam impressed with an additional two dimensional pattern. The additional two dimensional pattern has image information from the first layer to achieve heat treatment of the product. The heat treatment is completed prior to laying down additional new layers of material. The heat treatment is an annealing operation.
    Type: Grant
    Filed: February 19, 2020
    Date of Patent: January 26, 2021
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: James A. Demuth, Andrew J. Bayramian, Bassem S. El-Dasher, Joseph C. Farmer, Kevin J. Kramer, Alexander Rubenchik
  • Publication number: 20210008623
    Abstract: A method of additive manufacture suitable for large and high resolution structures is disclosed. The method may include sequentially advancing each portion of a continuous part in the longitudinal direction from a first zone to a second zone. In the first zone, selected granules of a granular material may be amalgamated. In the second zone, unamalgamated granules of the granular material may be removed. The method may further include advancing a first portion of the continuous part from the second zone to a third zone while (1) a last portion of the continuous part is formed within the first zone and (2) the first portion is maintained in the same position in the lateral and transverse directions that the first portion occupied within the first zone and the second zone.
    Type: Application
    Filed: September 24, 2020
    Publication date: January 14, 2021
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20210001404
    Abstract: A method and an apparatus pertaining to recycling and reuse of unwanted light in additive manufacturing can multiplex multiple beams of light including at least one or more beams of light from one or more light sources. The multiple beams of light may be reshaped and blended to provide a first beam of light. A spatial polarization pattern may be applied on the first beam of light to provide a second beam of light. Polarization states of the second beam of light may be split to reflect a third beam of light, which may be reshaped into a fourth beam of light. The fourth beam of light may be introduced as one of the multiple beams of light to result in a fifth beam of light.
    Type: Application
    Filed: September 23, 2020
    Publication date: January 7, 2021
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Patent number: 10870150
    Abstract: A method of additive manufacture suitable for large and high resolution structures is disclosed. The method may include sequentially advancing each portion of a continuous part in the longitudinal direction from a first zone to a second zone. In the first zone, selected granules of a granular material may be amalgamated. In the second zone, unamalgamated granules of the granular material may be removed. The method may further include advancing a first portion of the continuous part from the second zone to a third zone while (1) a last portion of the continuous part is formed within the first zone and (2) the first portion is maintained in the same position in the lateral and transverse directions that the first portion occupied within the first zone and the second zone.
    Type: Grant
    Filed: October 28, 2016
    Date of Patent: December 22, 2020
    Assignee: SEURAT TECHNOLOGIES, INC.
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20200376553
    Abstract: An additive manufacturing system including a two-dimensional energy patterning system for imaging a powder bed is disclosed. Improved optical systems supporting beam combining, beam steering, and both patterned and unpatterned beam recycling and re-use are described.
    Type: Application
    Filed: November 19, 2019
    Publication date: December 3, 2020
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20200368817
    Abstract: A method is disclosed for manufacturing a part via an additive manufacturing process. A solution is used which has a volatile component within which is suspended particles of a powdered material. The solution is heated until it at least one of begins boiling or is about to begin boiling. The heated solution is then deposited at least at one location on a substrate to help form a layer of the part. The volatile component then evaporates, leaving only the particles of powdered material. The particles are then heated to the melting point. The deposition and heating operations are repeated to successively form a plurality of layers for the part. The evaporation of the volatile component helps to cool the part.
    Type: Application
    Filed: August 10, 2020
    Publication date: November 26, 2020
    Inventors: James A. DEMUTH, Andrew J. BAYRAMIAN, Bassem S. EL-DASHER, Kevin J. KRAMER
  • Patent number: 10843266
    Abstract: A method of additive manufacture is disclosed. The method may include creating, by a 3D printer contained within an enclosure, a part having a weight greater than or equal to 2,000 kilograms. A gas management system may maintain gaseous oxygen within the enclosure atmospheric level. In some embodiments, a wheeled vehicle may transport the part from inside the enclosure, through an airlock, as the airlock operates to buffer between a gaseous environment within the enclosure and a gaseous environment outside the enclosure, and to a location exterior to both the enclosure and the airlock.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: November 24, 2020
    Assignee: SEURAT TECHNOLOGIES, INC.
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Patent number: 10843265
    Abstract: A method of additive manufacture is disclosed. The method may include restricting, by an enclosure, an exchange of gaseous matter between an interior of the enclosure and an exterior of the enclosure. The method may further include running multiple machines within the enclosure. Each of the machines may execute its own process of additive manufacture. While the machines are running, a gas management system may maintain gaseous oxygen within the enclosure at or below a limiting oxygen concentration for the interior.
    Type: Grant
    Filed: October 27, 2016
    Date of Patent: November 24, 2020
    Assignee: SEURAT TECHNOLOGIES, INC.
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20200346283
    Abstract: The present disclosure relates to a system and apparatus having an optic and a cooling system for cooling the optic. In one example an optically addressed light valve forms the optic. The cooling system includes first and second windows on opposing surfaces of the optically addressed light valve which constrain a cooling fluid to flow over the opposing surfaces. The fluid pressure outside the optically addressed light valve is low enough that it does not compress a liquid crystal gap of the optically addressed light valve. The cooling fluid is also transparent to a high powered light beam which is projected through the first and second windows, and also through the optically addressed light valve, during an additive manufacturing operation.
    Type: Application
    Filed: July 16, 2020
    Publication date: November 5, 2020
    Inventors: James A. DEMUTH, Eric B. DUOSS, Joshua D. KUNTZ, Paul A. ROSSO, Christopher M. SPADACCINI
  • Patent number: 10807273
    Abstract: A system of 3D printing using a high temperature 3D print head that functions as a “modified ink jet” printer. The print head has the ability to print high temperature material such as metal, silicon carbide, and other high temperature material as opposed to inks or plastics. The print head is fabricated from a high temperature material to maintain structural integrity while operation at temperatures above the melting temperature for the material that is being printed.
    Type: Grant
    Filed: November 23, 2015
    Date of Patent: October 20, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Kevin J. Kramer, Andrew Bayramian, James A. DeMuth, Bassem S. El-dasher
  • Patent number: 10747033
    Abstract: A system and an apparatus having an optic and a cooling system for cooling the optic. In one example an optically addressed light valve forms the optic. The cooling system includes first and second windows on opposing surfaces of the optically addressed light valve which constrain a cooling fluid to flow over the opposing surfaces. The fluid pressure outside the optically addressed light valve is low enough that it does not compress a liquid crystal gap of the optically addressed light valve. The cooling fluid is also transparent to a high powered light beam which is projected through the first and second windows, and also through the optically addressed light valve, during an additive manufacturing operation.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: August 18, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: James A. DeMuth, Eric B. Duoss, Joshua D. Kuntz, Paul A. Rosso, Christopher M. Spadaccini
  • Patent number: 10737324
    Abstract: A method is disclosed for manufacturing a part via an additive manufacturing process. A solution is used which has a volatile component within which is suspended particles of a powdered material. The solution is heated until it at least one of begins boiling or is about to begin boiling. The heated solution is then deposited at least at one location on a substrate to help form a layer of the part. The volatile component then evaporates, leaving only the particles of powdered material. The particles are then heated to the melting point. The deposition and heating operations are repeated to successively form a plurality of layers for the part. The evaporation of the volatile component helps to cool the part.
    Type: Grant
    Filed: October 2, 2014
    Date of Patent: August 11, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: James A. Demuth, Andrew Bayramian, Bassem S. El-Dasher, Kevin J. Kramer
  • Publication number: 20200198060
    Abstract: A method of additive manufacture is disclosed. The method may include providing a powder bed and directing a shaped laser beam pulse train consisting of one or more pulses and having a flux greater than 20 kW/cm2 at a defined two dimensional region of the powder bed. This minimizes adverse laser plasma effects during the process of melting and fusing powder within the defined two dimensional region.
    Type: Application
    Filed: December 19, 2019
    Publication date: June 25, 2020
    Inventors: Andrew J. Bayramian, James A. DeMuth, Ning Duanmu, Yiyu Shen
  • Publication number: 20200189038
    Abstract: A method of additive manufacture is disclosed. The method can include providing an enclosure surrounding a powder bed and having an atmosphere including helium gas. A high flux laser beam is directed at a defined two dimensional region of the powder bed. Powder is melted and fused within the defined two dimensional region, with less than 50% by weight of the powder particles being displaced into any defined two dimensional region that shares an edge or corner with the defined two dimensional region where powder melting and fusing occurs.
    Type: Application
    Filed: December 12, 2019
    Publication date: June 18, 2020
    Inventors: Ning Duanmu, James A. DeMuth, Andrew J. Bayramian, Yiyu Shen, Drew W. Kissinger
  • Publication number: 20200180029
    Abstract: The present disclosure relates to a method of producing a product through additive manufacturing with heat treatment. The method involves using a fusing beam to melt powder particles disposed on a substrate, where the fusing beam is impressed with a two dimensional pattern containing image information from a first layer to be printed. The fused powder particles are then heat treated with a beam impressed with an additional two dimensional pattern. The additional two dimensional pattern has image information from the first layer to achieve heat treatment of the product. The heat treatment is completed prior to laying down additional new layers of material. The heat treatment is an annealing operation.
    Type: Application
    Filed: February 19, 2020
    Publication date: June 11, 2020
    Inventors: James A. DEMUTH, Andrew J. BAYRAMIAN, Bassem S. EL-DASHER, Joseph C. FARMER, Kevin J. KRAMER, Alexander RUBENCHIK
  • Publication number: 20200164438
    Abstract: A method and an apparatus for collecting powder samples in real-time in powder bed fusion additive manufacturing may involves an ingester system for in-process collection and characterizations of powder samples. The collection may be performed periodically and uses the results of characterizations for adjustments in the powder bed fusion process. The ingester system of the present disclosure is capable of packaging powder samples collected in real-time into storage containers serving a multitude purposes of audit, process adjustments or actions.
    Type: Application
    Filed: January 31, 2020
    Publication date: May 28, 2020
    Inventors: James A. DeMuth, Erik Toomre, Francis L. Leard, Kourosh Kamshad, Heiner Fees, Eugene Berdichevsky
  • Publication number: 20200139487
    Abstract: The present disclosure relates to a system for performing an Additive Manufacturing (AM) fabrication process on a powdered material (PM) forming a substrate. The system uses a first optical subsystem to generate an optical signal comprised of electromagnetic (EM) radiation sufficient to melt or sinter a PM of the substrate. The first optical subsystem is controlled to generate a plurality of different power density levels, with a specific one being selected based on a specific PM forming a powder bed being used to form a 3D part. At least one processor controls the first optical subsystem and adjusts a power density level of the optical signal, taking into account a composition of the PM. A second optical subsystem receives the optical signal from the first optical subsystem and controls the optical signal to help facilitate melting of the PM in a layer-by-layer sequence of operations.
    Type: Application
    Filed: December 27, 2019
    Publication date: May 7, 2020
    Inventors: Bassem S. EL-DASHER, Andrew BAYRAMIAN, James A. DEMUTH, Joseph C. FARMER, Sharon G. TORRES
  • Patent number: 10618111
    Abstract: An additive manufacturing system having a heat source for melting powder particles in a desired shape and pattern to produce a product. A secondary heat source is used for heat treating the product to achieve heat treatment. The secondary heat source is used to peen or anneal residual stresses caused by the additive manufacturing process.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: April 14, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: James A. DeMuth, Andrew Bayramian, Bassem S. El-dasher, Joseph C. Farmer, Kevin J. Kramer, Alexander Rubenchik