Patents by Inventor James A. Slinkman

James A. Slinkman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11152495
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: October 19, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Max L. Lifson, James A. Slinkman, Theodore G. Van Kessel, Randy L. Wolf
  • Patent number: 11081572
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: August 3, 2021
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Max L. Lifson, James A. Slinkman, Theodore G. Van Kessel, Randy L. Wolf
  • Patent number: 10629710
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
    Type: Grant
    Filed: July 10, 2018
    Date of Patent: April 21, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Max L. Lifson, James A. Slinkman, Theodore G. Van Kessel, Randy L. Wolf
  • Patent number: 10600893
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
    Type: Grant
    Filed: June 15, 2018
    Date of Patent: March 24, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Max L. Lifson, James A. Slinkman, Theodore G. Van Kessel, Randy L. Wolf
  • Publication number: 20200027973
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 23, 2020
    Inventors: Alan B. BOTULA, Max L. LIFSON, James A. SLINKMAN, Theodore G. VAN KESSEL, Randy L. WOLF
  • Publication number: 20190363182
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
    Type: Application
    Filed: August 7, 2019
    Publication date: November 28, 2019
    Inventors: Alan B. BOTULA, Max L. LIFSON, James A. SLINKMAN, Theodore G. VAN KESSEL, Randy L. WOLF
  • Publication number: 20180331207
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer.
    Type: Application
    Filed: July 10, 2018
    Publication date: November 15, 2018
    Inventors: Alan B. BOTULA, Max L. LIFSON, James A. SLINKMAN, Theodore G. VAN KESSEL, Randy L. WOLF
  • Patent number: 10109553
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
    Type: Grant
    Filed: March 28, 2017
    Date of Patent: October 23, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Max L. Lifson, James A. Slinkman, Theodore G. Van Kessel, Randy L. Wolf
  • Publication number: 20180294346
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
    Type: Application
    Filed: June 15, 2018
    Publication date: October 11, 2018
    Inventors: Alan B. BOTULA, Max L. LIFSON, James A. SLINKMAN, Theodore G. VAN KESSEL, Randy L. WOLF
  • Patent number: 10068827
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
    Type: Grant
    Filed: January 9, 2017
    Date of Patent: September 4, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Max L. Lifson, James A. Slinkman, Theodore G. Van Kessel, Randy L. Wolf
  • Publication number: 20170330933
    Abstract: Semiconductor structures formed using a substrate that has a porous semiconductor layer and a device layer on the porous semiconductor layer. One or more trench isolation regions are formed in the device layer that surround an active device region. An opening is formed that extends through the one or more trench isolation regions to the porous semiconductor layer. A removal agent is directed through the opening to remove the porous semiconductor layer from a volume beneath the active device region and thereby form an air gap vertically beneath the active device region.
    Type: Application
    Filed: June 14, 2017
    Publication date: November 16, 2017
    Inventors: Richard A. Phelps, James A. Slinkman
  • Patent number: 9755015
    Abstract: Semiconductor structures formed using a substrate that has a porous semiconductor layer and a device layer on the porous semiconductor layer. One or more trench isolation regions are formed in the device layer that surround an active device region. An opening is formed that extends through the one or more trench isolation regions to the porous semiconductor layer. A removal agent is directed through the opening to remove the porous semiconductor layer from a volume beneath the active device region and thereby form an air gap vertically beneath the active device region.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: September 5, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Richard A. Phelps, James A. Slinkman
  • Publication number: 20170200665
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer.
    Type: Application
    Filed: March 28, 2017
    Publication date: July 13, 2017
    Inventors: Alan B. BOTULA, Max L. LIFSON, James A. SLINKMAN, Theodore G. VAN KESSEL, Randy L. WOLF
  • Patent number: 9704978
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: July 11, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Max L. Lifson, James A. Slinkman, Theodore G. Van Kessel, Randy L. Wolf
  • Patent number: 9666701
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: May 30, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Max L. Lifson, James A. Slinkman, Theodore G. Van Kessel, Randy L. Wolf
  • Patent number: 9653477
    Abstract: Various embodiments include field effect transistors (FETs) and methods of forming such FETs. One method includes: forming a first set of openings in a precursor structure having: a silicon substrate having a crystal direction, the silicon substrate substantially abutted by a first oxide; a silicon germanium (SiGe) layer overlying the silicon substrate; a silicon layer overlying the SiGe layer; a second oxide overlying the silicon layer; and a sacrificial layer overlying the second oxide, wherein the first set of openings each expose the silicon substrate; undercut etching the silicon substrate in a direction perpendicular to the crystal direction of the silicon substrate to form a trench corresponding with each of the first set of openings; passivating exposed surfaces of at least one of the SiGe layer or the silicon layer in the first set of openings; and at least partially filling each trench with a dielectric.
    Type: Grant
    Filed: January 3, 2014
    Date of Patent: May 16, 2017
    Assignee: International Business Machines Corporation
    Inventors: Peng Cheng, James S. Dunn, Blaine J. Gross, Qizhi Liu, James A. Slinkman
  • Patent number: 9646993
    Abstract: Various embodiments include field effect transistors (FETs) and related integrated circuit (IC) layouts. One FET includes: a silicon substrate including a set of trenches; a first oxide abutting the silicon substrate; a silicon germanium (SiGe) layer overlying the silicon substrate; a silicon layer overlying the SiGe layer; a second oxide overlying the silicon layer, wherein the silicon layer includes a plurality of salicide regions; a gate structure overlying the second oxide between adjacent salicide regions; and a first contact contacting the gate structure; a second contact contacting one of the salicide regions; a third oxide partially filling the set of trenches and extending above the silicon layer overlying the SiGe layer; and an air gap in each of the set of trenches, the air gap surrounded by the third oxide.
    Type: Grant
    Filed: August 25, 2015
    Date of Patent: May 9, 2017
    Assignee: International Business Machines Corporation
    Inventors: Peng Cheng, James S. Dunn, Blaine J. Gross, Qizhi Liu, James A. Slinkman
  • Publication number: 20170117206
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
    Type: Application
    Filed: January 9, 2017
    Publication date: April 27, 2017
    Inventors: Alan B. BOTULA, Max L. LIFSON, James A. SLINKMAN, Theodore G. VAN KESSEL, Randy L. WOLF
  • Patent number: 9601606
    Abstract: An approach for heat dissipation in integrated circuit devices is provided. A method includes forming an isolation layer on an electrically conductive feature of an integrated circuit device. The method also includes forming an electrically conductive layer on the isolation layer. The method additionally includes forming a plurality of nanowire structures on a surface of the electrically conductive layer.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: March 21, 2017
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Max L. Lifson, James A. Slinkman, Theodore G. Van Kessel, Randy L. Wolf
  • Patent number: 9530711
    Abstract: An approach for sinking heat from a transistor is provided. A method includes forming a substrate contact extending from a first portion of a silicon-on-insulator (SOI) island to a substrate. The method also includes forming a transistor in a second portion of the SOI island. The method further includes electrically isolating the substrate contact from the transistor by doping the first portion of the SOI island.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: December 27, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Alan B. Botula, Alvin J. Joseph, James A. Slinkman, Randy L. Wolf