Patents by Inventor James A. Slinkman

James A. Slinkman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140306325
    Abstract: A silicon device includes an active silicon layer, a buried oxide (BOX) layer beneath the active silicon layer and a high-resistivity silicon layer beneath the BOX layer. The device also includes a harmonic suppression layer at a boundary of the BOX layer and the high-resistivity silicon layer.
    Type: Application
    Filed: June 24, 2014
    Publication date: October 16, 2014
    Inventors: Alan B. Botula, Mark D. Jaffe, Alvin J. Joseph, Richard A. Phelps, James Slinkman, Randy L. Wolf
  • Patent number: 8828746
    Abstract: A silicon device includes an active silicon layer, a buried oxide (BOX) layer beneath the active silicon layer and a high-resistivity silicon layer beneath the BOX layer. The device also includes a harmonic suppression layer at a boundary of the BOX layer and the high-resistivity silicon layer.
    Type: Grant
    Filed: November 14, 2012
    Date of Patent: September 9, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Mark D. Jaffe, Alvin J. Joseph, Richard A. Phelps, James Slinkman, Randy L. Wolf
  • Publication number: 20140191322
    Abstract: An approach for sinking heat from a transistor is provided. A method includes forming a substrate contact extending from a first portion of a silicon-on-insulator (SOI) island to a substrate. The method also includes forming a transistor in a second portion of the SOI island. The method further includes electrically isolating the substrate contact from the transistor by doping the first portion of the SOI island.
    Type: Application
    Filed: January 10, 2013
    Publication date: July 10, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. BOTULA, Alvin J. JOSEPH, James A. SLINKMAN, Randy L. WOLF
  • Patent number: 8748285
    Abstract: A semiconductor structure includes a semiconductor-on-insulator substrate, the semiconductor-on-insulator substrate comprising a handle wafer, a buried oxide (BOX) layer on top of the handle wafer, and a top silicon layer on top of the BOX layer; and an implantation region located in the top silicon layer, the implantation region comprising a noble gas.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: June 10, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, William F. Clark, Jr., Richard A. Phelps, BethAnn Rainey, Yun Shi, James A. Slinkman
  • Publication number: 20140131800
    Abstract: A silicon device includes an active silicon layer, a buried oxide (BOX) layer beneath the active silicon layer and a high-resistivity silicon layer beneath the BOX layer. The device also includes a harmonic suppression layer at a boundary of the BOX layer and the high-resistivity silicon layer.
    Type: Application
    Filed: November 14, 2012
    Publication date: May 15, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, Mark D. Jaffe, Alvin J. Joseph, Richard A. Phelps, James Slinkman, Randy L. Wolf
  • Patent number: 8709903
    Abstract: Disclosed is semiconductor structure with an insulator layer on a semiconductor substrate and a device layer is on the insulator layer. The substrate is doped with a relatively low dose of a dopant having a given conductivity type such that it has a relatively high resistivity. Additionally, a portion of the semiconductor substrate immediately adjacent to the insulator layer can be doped with a slightly higher dose of the same dopant, a different dopant having the same conductivity type or a combination thereof. Optionally, micro-cavities are created within this same portion so as to balance out any increase in conductivity due to increased doping with a corresponding increase in resistivity. Increasing the dopant concentration at the semiconductor substrate-insulator layer interface raises the threshold voltage (Vt) of any resulting parasitic capacitors and, thereby reduces harmonic behavior. Also disclosed herein are embodiments of a method for forming such a semiconductor structure.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: April 29, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, John J. Ellis-Monaghan, Alvin J. Joseph, Max G. Levy, Richard A. Phelps, James A. Slinkman, Randy L. Wolf
  • Patent number: 8698244
    Abstract: Disclosed is semiconductor structure with an insulator layer on a semiconductor substrate and a device layer is on the insulator layer. The substrate is doped with a relatively low dose of a dopant having a given conductivity type such that it has a relatively high resistivity. Additionally, a portion of the semiconductor substrate immediately adjacent to the insulator layer can be doped with a slightly higher dose of the same dopant, a different dopant having the same conductivity type or a combination thereof. Optionally, micro-cavities are created within this same portion so as to balance out any increase in conductivity with a corresponding increase in resistivity. Increasing the dopant concentration at the semiconductor substrate-insulator layer interface raises the threshold voltage (Vt) of any resulting parasitic capacitors and, thereby reduces harmonic behavior. Also disclosed herein are embodiments of a method and a design structure for such a semiconductor structure.
    Type: Grant
    Filed: December 10, 2009
    Date of Patent: April 15, 2014
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, John J. Ellis-Monaghan, Alvin J. Joseph, Max G. Levy, Richard A. Phelps, James A. Slinkman, Randy L. Wolf
  • Publication number: 20140004687
    Abstract: Disclosed is semiconductor structure with an insulator layer on a semiconductor substrate and a device layer is on the insulator layer. The substrate is doped with a relatively low dose of a dopant having a given conductivity type such that it has a relatively high resistivity. Additionally, a portion of the semiconductor substrate immediately adjacent to the insulator layer can be doped with a slightly higher dose of the same dopant, a different dopant having the same conductivity type or a combination thereof. Optionally, micro-cavities are created within this same portion so as to balance out any increase in conductivity due to increased doping with a corresponding increase in resistivity. Increasing the dopant concentration at the semiconductor substrate-insulator layer interface raises the threshold voltage (Vt) of any resulting parasitic capacitors and, thereby reduces harmonic behavior. Also disclosed herein are embodiments of a method for forming such a semiconductor structure.
    Type: Application
    Filed: September 5, 2013
    Publication date: January 2, 2014
    Applicant: International Business Machines Corporation
    Inventors: Alan B. Botula, John J. Ellis-Monaghan, Alvin J. Joseph, Max G. Levy, Richard A. Phelps, James A. Slinkman, Randy L. Wolf
  • Patent number: 8564067
    Abstract: Disclosed is semiconductor structure with an insulator layer on a semiconductor substrate and a device layer is on the insulator layer. The substrate is doped with a relatively low dose of a dopant having a given conductivity type such that it has a relatively high resistivity. Additionally, a portion of the semiconductor substrate immediately adjacent to the insulator layer can be doped with a slightly higher dose of the same dopant, a different dopant having the same conductivity type or a combination thereof. Optionally, micro-cavities are created within this same portion so as to balance out any increase in conductivity due to increased doping with a corresponding increase in resistivity. Increasing the dopant concentration at the semiconductor substrate-insulator layer interface raises the threshold voltage (Vt) of any resulting parasitic capacitors and, thereby reduces harmonic behavior. Also disclosed herein are embodiments of a method for forming such a semiconductor structure.
    Type: Grant
    Filed: February 21, 2013
    Date of Patent: October 22, 2013
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, John J. Ellis-Monaghan, Alvin J. Joseph, Max G. Levy, Richard A. Phelps, James A. Slinkman, Randy L. Wolf
  • Patent number: 8492868
    Abstract: A method, integrated circuit and design structure includes a silicon substrate layer having trench structures and an ion impurity implant. An insulator layer is positioned on and contacts the silicon substrate layer. The insulator layer fills the trench structures. A circuitry layer is positioned on and contacts the buried insulator layer. The circuitry layer comprises groups of active circuits separated by passive structures. The trench structures are positioned between the groups of active circuits when the integrated circuit structure is viewed from the top view. Thus, the trench structures are below the passive structures and are not below the groups of circuits when the integrated circuit structure is viewed from the top view.
    Type: Grant
    Filed: August 2, 2010
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, Alvin J. Joseph, James A. Slinkman, Randy L. Wolf
  • Patent number: 8492294
    Abstract: A semiconductor-on-insulator substrate and a related semiconductor structure, as well as a method for fabricating the semiconductor-on-insulator substrate and the related semiconductor structure, provide for a multiple order radio frequency harmonic suppressing region located and formed within a base semiconductor substrate at a location beneath an interface of a buried dielectric layer with the base semiconductor substrate within the semiconductor-on-insulator substrate. The multiple order radio frequency harmonic suppressing region may comprise an ion implanted atom, such as but not limited to a noble gas atom, to provide a suppressed multiple order radio frequency harmonic when powering a radio frequency device, such as but not limited to a radio frequency complementary metal oxide semiconductor device (or alternatively a passive device), located and formed within and upon a surface semiconductor layer within the semiconductor structure.
    Type: Grant
    Filed: September 10, 2012
    Date of Patent: July 23, 2013
    Assignee: International Business Machines Corporation
    Inventors: Joseph R. Greco, Kevin Munger, Richard A. Phelps, Jennifer C. Robbins, William Savaria, James A. Slinkman, Randy L. Wolf
  • Patent number: 8482067
    Abstract: A lateral, extended drain, metal oxide semiconductor, field effect transistor (LEDMOSFET) with a high drain-to-body breakdown voltage (Vb) incorporates gate structure extensions on opposing sides of a drain drift region. The extensions are tapered such that a distance between each extension and the drift region increases linearly from one end adjacent to the channel region to another end adjacent to the drain region. In one embodiment, these extensions can extend vertically through the isolation region that surrounds the LEDMOSFET. In another embodiment, the extensions can sit atop the isolation region. In either case, the extensions create a strong essentially uniform horizontal electric field profile within the drain drift. Also disclosed are a method for forming the LEDMOSFET with a specific Vb by defining the dimensions of the extensions and a program storage device for designing the LEDMOSFET to have a specific Vb.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: July 9, 2013
    Assignee: International Business Machines Corporation
    Inventors: Michel J. Abou-Khalil, Alan B. Botula, Alvin J. Joseph, Theodore J. Letavic, James A. Slinkman
  • Patent number: 8471340
    Abstract: Disclosed is semiconductor structure with an insulator layer on a semiconductor substrate and a device layer is on the insulator layer. The substrate is doped with a relatively low dose of a dopant having a given conductivity type such that it has a relatively high resistivity. Additionally, a portion of the semiconductor substrate immediately adjacent to the insulator layer can be doped with a slightly higher dose of the same dopant, a different dopant having the same conductivity type or a combination thereof. Optionally, micro-cavities are created within this same portion so as to balance out any increase in conductivity due to increased doping with a corresponding increase in resistivity. Increasing the dopant concentration at the semiconductor substrate-insulator layer interface raises the threshold voltage (Vt) of any resulting parasitic capacitors and, thereby reduces harmonic behavior. Also disclosed herein are embodiments of a method for forming such a semiconductor structure.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: June 25, 2013
    Assignee: International Business Machines Corporation
    Inventors: Alan B. Botula, John J. Ellis-Monaghan, Alvin J. Joseph, Max G. Levy, Richard A. Phelps, James A. Slinkman, Randy L. Wolf
  • Publication number: 20130134518
    Abstract: A semiconductor structure includes a semiconductor-on-insulator substrate, the semiconductor-on-insulator substrate comprising a handle wafer, a buried oxide (BOX) layer on top of the handle wafer, and a top silicon layer on top of the BOX layer; and an implantation region located in the top silicon layer, the implantation region comprising a noble gas.
    Type: Application
    Filed: November 28, 2011
    Publication date: May 30, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Alan B. Botula, William F. Clark, JR., Richard A. Phelps, BethAnn Rainey, Yun Shi, James A. Slinkman
  • Publication number: 20130001589
    Abstract: A lateral, extended drain, metal oxide semiconductor, field effect transistor (LEDMOSFET) with a high drain-to-body breakdown voltage (Vb) incorporates gate structure extensions on opposing sides of a drain drift region. The extensions are tapered such that a distance between each extension and the drift region increases linearly from one end adjacent to the channel region to another end adjacent to the drain region. In one embodiment, these extensions can extend vertically through the isolation region that surrounds the LEDMOSFET. In another embodiment, the extensions can sit atop the isolation region. In either case, the extensions create a strong essentially uniform horizontal electric field profile within the drain drift. Also disclosed are a method for forming the LEDMOSFET with a specific Vb by defining the dimensions of the extensions and a program storage device for designing the LEDMOSFET to have a specific Vb.
    Type: Application
    Filed: September 6, 2012
    Publication date: January 3, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michel J. Abou-Khalil, Alan B. Botula, Alvin J. Joseph, Theodore J. Letavic, James A. Slinkman
  • Publication number: 20130005157
    Abstract: A semiconductor-on-insulator substrate and a related semiconductor structure, as well as a method for fabricating the semiconductor-on-insulator substrate and the related semiconductor structure, provide for a multiple order radio frequency harmonic suppressing region located and formed within a base semiconductor substrate at a location beneath an interface of a buried dielectric layer with the base semiconductor substrate within the semiconductor-on-insulator substrate. The multiple order radio frequency harmonic suppressing region may comprise an ion implanted atom, such as but not limited to a noble gas atom, to provide a suppressed multiple order radio frequency harmonic when powering a radio frequency device, such as but not limited to a radio frequency complementary metal oxide semiconductor device (or alternatively a passive device), located and formed within and upon a surface semiconductor layer within the semiconductor structure.
    Type: Application
    Filed: September 10, 2012
    Publication date: January 3, 2013
    Applicant: International Business Machines Corporation
    Inventors: Joseph R. Greco, Kevin Munger, Richard A. Phelps, Jennifer C. Robbins, William Savaria, James A. Slinkman, Randy L. Wolf
  • Patent number: 8299537
    Abstract: A semiconductor-on-insulator substrate and a related semiconductor structure, as well as a method for fabricating the semiconductor-on-insulator substrate and the related semiconductor structure, provide for a multiple order radio frequency harmonic suppressing region located and formed within a base semiconductor substrate at a location beneath an interface of a buried dielectric layer with the base semiconductor substrate within the semiconductor-on-insulator substrate. The multiple order radio frequency harmonic suppressing region may comprise an ion implanted atom, such as but not limited to a noble gas atom, to provide a suppressed multiple order radio frequency harmonic when powering a radio frequency device, such as but not limited to a radio frequency complementary metal oxide semiconductor device (or alternatively a passive device), located and formed within and upon a surface semiconductor layer within the semiconductor structure.
    Type: Grant
    Filed: February 11, 2009
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Joseph R. Greco, Kevin Munger, Richard A. Phelps, Jennifer C. Robbins, William Savaria, James A. Slinkman, Randy L. Wolf
  • Patent number: 8299547
    Abstract: A lateral, extended drain, metal oxide semiconductor, field effect transistor (LEDMOSFET) with a high drain-to-body breakdown voltage (Vb) incorporates gate structure extensions on opposing sides of a drain drift region. The extensions are tapered such that a distance between each extension and the drift region increases linearly from one end adjacent to the channel region to another end adjacent to the drain region. In one embodiment, these extensions can extend vertically through the isolation region that surrounds the LEDMOSFET. In another embodiment, the extensions can sit atop the isolation region. In either case, the extensions create a strong essentially uniform horizontal electric field profile within the drain drift. Also disclosed are a method for forming the LEDMOSFET with a specific Vb by defining the dimensions of the extensions and a program storage device for designing the LEDMOSFET to have a specific Vb.
    Type: Grant
    Filed: January 3, 2011
    Date of Patent: October 30, 2012
    Assignee: International Business Machines Corporation
    Inventors: Michel J. Abou-Khalil, Alan B. Botula, Alvin J. Joseph, Theodore J. Letavic, James A. Slinkman
  • Patent number: 8227318
    Abstract: A method of forming an isolation region is provided that in one embodiment substantially reduces divot formation. In one embodiment, the method includes providing a semiconductor substrate, forming a first pad dielectric layer on an upper surface of the semiconductor substrate and forming a trench through the first pad dielectric layer into the semiconductor substrate. In a following process sequence, the first pad dielectric layer is laterally etched to expose an upper surface of the semiconductor substrate that is adjacent the trench, and the trench is filled with a trench dielectric material, wherein the trench dielectric material extends atop the upper surface of the semiconductor substrate adjacent the trench and abuts the pad dielectric layer.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: July 24, 2012
    Assignee: International Business Machines Corporation
    Inventors: Max Levy, Natalie Feilchenfeld, Richard Phelps, BethAnn Rainey, James Slinkman, Steven H. Voldman, Michael Zierak, Hubert Enichlmair, Martin Knaipp, Bernard Loeffler, Rainer Minixhofer, Jong-Mun Park, Georg Roehrer
  • Publication number: 20120168817
    Abstract: Disclosed are embodiments of a lateral, extended drain, metal oxide semiconductor, field effect transistor (LEDMOSFET) having a high drain-to-body breakdown voltage. Discrete conductive field (CF) plates are adjacent to opposing sides of the drain drift region, each having an angled sidewall such that the area between the drain drift region and the CF plate has a continuously increasing width along the length of the drain drift region from the channel region to the drain region. The CF plates can comprise polysilicon or metal structures or dopant implant regions within the same semiconductor body as the drain drift region. The areas between the CF plates and the drain drift region can comprise tapered dielectric regions or, alternatively, tapered depletion regions within the same semiconductor body as the drain drift region. Also disclosed are embodiments of a method for forming an LEDMOSFET and embodiments of a silicon-controlled rectifier (SCR) incorporating such LEDMOSFETs.
    Type: Application
    Filed: September 21, 2011
    Publication date: July 5, 2012
    Applicant: International Business Machines Corporation
    Inventors: Michel J. Abou-Khalil, Alan B. Botula, Alvin J. Joseph, Theodore J. Letavic, James A. Slinkman