Patents by Inventor James A. Wright
James A. Wright has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20150075681Abstract: A martensitic stainless steel alloy is strengthened by copper-nucleated nitride precipitates. The alloy includes, in combination by weight percent, about 10.0 to about 12.5 Cr, about 2.0 to about 7.5 Ni, up to about 17.0 Co, about 0.6 to about 1.5 Mo, about 0.5 to about 2.3 Cu, up to about 0.6 Mn, up to about 0.4 Si, about 0.05 to about 0.15 V, up to about 0.10 N, up to about 0.035 C, up to about 0.01 W, and the balance Fe and incidental elements and impurities. The nitride precipitates may be enriched by one or more transition metals.Type: ApplicationFiled: August 18, 2014Publication date: March 19, 2015Inventors: James A. Wright, Gregory B. Olson, Weija Tang
-
Publication number: 20150071814Abstract: The disclosure provides gold alloys. The alloys can have improved strength and hardness. The gold alloys can have various gold colors, including yellow gold and rose gold. The gold alloys can be used as enclosures for electronic devices.Type: ApplicationFiled: September 10, 2014Publication date: March 12, 2015Inventors: Zechariah D. Feinberg, James A. Wright
-
Publication number: 20140361945Abstract: A patch for a device in an electronic housing including an aluminum layer having a threshold thickness, a non-conductive layer on a first side of the aluminum layer, and a radio-frequency (RF) transparent layer on a second side of the aluminum layer is provided. A method for manufacturing an antenna window including a patch as above is also provided, the method including determining a thickness of the aluminum layer adjacent to an anodized aluminum layer. A method for manufacturing an antenna window including coating an aluminum layer having a threshold thickness on a radio-frequency (RF) transparent layer to form an RF transparent laminate is also provided. A method for manufacturing an antenna window including removing a thickness of aluminum is also provided. A method for manufacturing an antenna window including disposing a mask on an aluminum substrate and anodizing the aluminum substrate to a selected thickness is also provided.Type: ApplicationFiled: June 7, 2013Publication date: December 11, 2014Inventors: Abhijeet MISRA, Brian S. TRYON, Charles J. KUEHMANN, Stephen B. LYNCH, James A. WRIGHT
-
Patent number: 8808471Abstract: A martensitic stainless steel alloy is strengthened by copper-nucleated nitride precipitates. The alloy includes, in combination by weight percent, about 10.0 to about 12.5 Cr, about 2.0 to about 7.5 Ni, up to about 17.0 Co, about 0.6 to about 1.5 Mo, about 0.5 to about 2.3 Cu, up to about 0.6 Mn, up to about 0.4 Si, about 0.05 to about 0.15 V, up to about 0.10 N, up to about 0.035 C, up to about 0.01 W, and the balance Fe and incidental elements and impurities. The nitride precipitates may be enriched by one or more transition metals.Type: GrantFiled: April 13, 2009Date of Patent: August 19, 2014Assignee: QuesTek Innovations LLCInventors: James A. Wright, Gregory B. Olson, Weijia Tang
-
Patent number: 8801872Abstract: A case hardened gear steel having enhanced core fracture toughness includes by weight percent about 16.3Co, 7.5Ni, 3.5Cr, 1.75Mo, 0.2W, 0.11C, 0.03Ti, and 0.02V and the balance Fe, characterized as a predominantly lath martensitic microstructure essentially free of topologically close-packed (TCP) phases and carburized to include fine M2C carbides to provide a case hardness of at least about 62 HRC and a core toughness of at least about 50 ksi?in.Type: GrantFiled: August 20, 2008Date of Patent: August 12, 2014Assignee: QuesTek Innovations, LLCInventors: James A. Wright, Jason Sebastian
-
Publication number: 20140060707Abstract: Alloys, processes for preparing the alloys, and manufactured articles including the alloys are described. The alloys include, by weight, about 10% to about 20% chromium, about 4% to about 7% titanium, about 1% to about 3% vanadium, 0% to about 10% iron, less than about 3% nickel, 0% to about 10% tungsten, less than about 1% molybdenum, and the balance of weight percent including cobalt and incidental elements and impurities.Type: ApplicationFiled: August 28, 2013Publication date: March 6, 2014Applicant: QuesTek Innovations LLCInventors: James A. Wright, Jeremy Hoishun Li
-
Patent number: 8518192Abstract: A lead-free copper alloy includes, in combination by weight, about 10.0% to about 20.0% bismuth, about 0.05% to about 0.3% phosphorous, about 2.2% to about 10.0% tin, up to about 5.0% antimony, and up to about 0.02% boron, the balance essentially copper and incidental elements and impurities. The alloy contains no more than about 0.05 wt. % or 0.10 wt. % lead.Type: GrantFiled: March 2, 2010Date of Patent: August 27, 2013Assignee: QuesTek Innovations, LLCInventors: Abhijeet Misra, Jason Sebastian, James A. Wright
-
Publication number: 20120291926Abstract: The disclosure relates to an alloy comprising, by weight, about 5.8% to about 6.8% zinc, about 2.5% to about 3.0% magnesium, about 1.5% to about 2.3% copper, 0% to about 0.2% scandium, 0% to about 0.2% zirconium, and optionally less than about 0.50% silver, the balance essentially aluminum and incidental elements and impurities. In embodiments, the alloy has a stress-corrosion cracking threshold stress of at least about 240 MPa using an ASTM G47 short-transverse test specimen and a yield strength of at least about 510 MPa using an ASTM E8 longitudinal test specimen.Type: ApplicationFiled: May 21, 2012Publication date: November 22, 2012Inventors: Abhijeet Misra, James A. Wright
-
Publication number: 20110303387Abstract: A lead-free copper alloy includes, in combination by weight, about 10.0% to about 20.0% bismuth, about 0.05% to about 0.3% phosphorous, about 2.2% to about 10.0% tin, up to about 5.0% antimony, and up to about 0.02% boron, the balance essentially copper and incidental elements and impurities. The alloy contains no more than about 0.05 wt. % or 0.10 wt. % lead.Type: ApplicationFiled: March 2, 2010Publication date: December 15, 2011Applicant: QUESTEK INNOVATIONS LLC.Inventors: Abhijeet Misra, Jason Sebastian, James A. Wright
-
Publication number: 20110268602Abstract: Provided herein are titanium alloys that can achieve a combination of high strength and high toughness or elongation, and a method to produce the alloys. By tolerating iron, oxygen, and other incidental elements and impurities, the alloys enable the use of lower quality scrap as raw materials. The alloys are castable and can form ?-phase laths in a basketweave morphology by a commercially feasible heat treatment that does not require hot-working or rapid cooling rates. The alloys comprise, by weight, about 3.0% to about 6.0% aluminum, 0% to about 1.5% tin, about 2.0% to about 4.0% vanadium, about 0.5% to about 4.5% molybdenum, about 1.0% to about 2.5% chromium, about 0.20% to about 0.55% iron, 0% to about 0.35% oxygen, 0% to about 0.007% boron, and 0% to about 0.60% other incidental elements and impurities, the balance of weight percent comprising titanium.Type: ApplicationFiled: April 29, 2011Publication date: November 3, 2011Applicant: QuesTek Innovations LLCInventors: James A. Wright, Jason Sebastian, Herng-Jeng Jou
-
Publication number: 20110094637Abstract: A martensitic stainless steel alloy is strengthened by copper-nucleated nitride precipitates. The alloy includes, in combination by weight percent, about 10.0 to about 12.5 Cr, about 2.0 to about 7.5 Ni, up to about 17.0 Co, about 0.6 to about 1.5 Mo, about 0.5 to about 2.3 Cu, up to about 0.6 Mn, up to about 0.4 Si, about 0.05 to about 0.15 V, up to about 0.10 N, up to about 0.035 C, up to about 0.01 W, and the balance Fe and incidental elements and impurities. The nitride precipitates may be enriched by one or more transition metals.Type: ApplicationFiled: April 13, 2009Publication date: April 28, 2011Applicant: QUESTEK INNOVATIONS LLCInventors: James A. Wright, Gregory B. Olson, Weija Tang
-
Publication number: 20110075520Abstract: An acoustic energy source for imparting acoustic energy into the Earth's subsurface includes an electrically driven transducer coupled to a source of swept frequency alternating current. A tunable Helmholtz resonator is disposed proximate the transducer. In one example, the resonator has a tuning device configured to maintain a resonant frequency substantially equal to an instantaneous frequency of the alternating current. The tuning device includes an actuator coupled to a sleeve, wherein the sleeve is disposed over selected numbers of openings in a wall of a tube on the resonator. The transducer and the resonator are disposed in a wellbore drilled through rock formations. The wellbore has a plurality of layers of fluid therein, each layer thereof having a different density and/or viscosity.Type: ApplicationFiled: September 20, 2010Publication date: March 31, 2011Inventors: Jacques Y. Gulgné, Nicholas G. Pace, James A. Wright, Gary J. Dinn
-
Publication number: 20100243112Abstract: A beryllium-free high-strength copper alloy includes, about 10-30 vol % of L12-(Ni,Cu)3(Al,Sn), and substantially excludes cellular discontinuous precipitation around grain boundaries. The alloy may include at least one component selected from the group consisting of: Ag, Cr, Mn, Nb, Ti, and V, and the balance Cu.Type: ApplicationFiled: March 31, 2009Publication date: September 30, 2010Applicant: QuesTek Innovations LLCInventors: James A. Wright, Abhijeet Misra
-
Publication number: 20090199930Abstract: A case hardened gear steel having enhanced core fracture toughness includes by weight percent about 16.3Co, 7.5Ni, 3.5Cr, 1.75Mo, 0.2W, 0.11C, 0.03Ti, and 0.02V and the balance Fe, characterized as a predominantly lath martensitic microstructure essentially free of topologically close-packed (TCP) phases and carburized to include fine M2C carbides to provide a case hardness of at least about 62 HRC and a core toughness of at least about 50 ksi?in.Type: ApplicationFiled: August 20, 2008Publication date: August 13, 2009Applicant: QuesTek Innovations LLCInventors: James A. Wright, Jason Sebastian
-
Patent number: 5748100Abstract: An acknowledge-back selective call system (100) transmits a first acknowledge-back page (300) that includes a first message data (306) and address information (302) that matches a first predetermined address (140) at an acknowledge-back selective call transceiver (130) and a second acknowledge-back page (300) that includes a second message data (306) and address information (302) that matches a second predetermined address (142) at the acknowledge-back selective call transceiver (130). The acknowledge-back selective call transceiver (130) receives the second acknowledge-back page (300), and, in response thereto, transmits an acknowledge-back confirmation response (500), the acknowledge-back confirmation response (500) including a message reception status information (502) indicating a message reception status for the first acknowledge-back page (300) and a message reception status information (504) indicating a message reception status for the second acknowledge-back page (300).Type: GrantFiled: October 6, 1995Date of Patent: May 5, 1998Assignee: Motorola, Inc.Inventors: Jose Gutman, James A. Wright
-
Patent number: 5669452Abstract: A blade plow preferably formed by three frame sections hingedly coupled together includes a ground or terrain contour following mechanism within each frame section. The contour mechanism allows the middle blade to be raised and lowered to maintain the entire central blade horizontal relative to the plow frame and at a constant depth within the ground. Additional "fixed" blades are hydraulically setable for depth of cut. The terrain contour following mechanism allows for larger frame widths without the usual tendency of smaller width frames to buckle due to ground unevenness.Type: GrantFiled: August 6, 1996Date of Patent: September 23, 1997Assignee: Quinstar CorporationInventors: James A. Wright, Henry F. Erikson, Glenn A. Wolf, James A. Boone
-
Patent number: 5569817Abstract: An inbred maize line, designated PHJJ3, the plants and seeds of inbred maize line PHJJ3, methods for producing a maize plant produced by crossing the inbred line PHJJ3 with itself or with another maize plant, and hybrid maize seeds and plants produced by crossing the inbred line PHJJ3 with another maize line or plant.Type: GrantFiled: January 31, 1995Date of Patent: October 29, 1996Assignee: Pioneer Hi-Bred International, Inc.Inventor: James A. Wright
-
Patent number: 5543575Abstract: According to the invention, there is provided an inbred corn line, designated PHK46. This invention thus relates to the plants and seeds of inbred corn line PHK46 and to methods for producing a corn plant produced by crossing the inbred line PHK46 with itself or with another corn plant. This invention further relates to hybrid corn seeds and plants produced by crossing the inbred line PHK46 with another corn line or plant and to crosses with related species.Type: GrantFiled: March 16, 1995Date of Patent: August 6, 1996Assignee: Pioneer-Hi-Bred International, Inc.Inventors: James A. Wright, Ottis O. Parrish
-
Patent number: 5426594Abstract: An electronic greeting card communication system (100) includes a first personal communicator (102), an electronic mail server (136), and a second personal communicator (102). The first personal communicator accepts off-line selection of an electronic greeting card from a user (502), and then transmits a request message corresponding to the off-line selection. The electronic mail server (136) receives the request message and then wireless transmits an electronic greeting card message to the second personal communicator (102) and updates billing information (620) for billing the user of the first personal communicator (102). The second personal communicator (102) selectively receives the wireless transmitted electronic greeting card message and presents it to a user.Type: GrantFiled: April 2, 1993Date of Patent: June 20, 1995Assignee: Motorola, Inc.Inventors: James A. Wright, Ali Saidi
-
Patent number: 5419442Abstract: The separation device includes a container having a dome-shaped base and a peripheral wall surrounding the base to define a chamber for receiving a random mixture of defective and nondefective articles. A spiral-shaped ramp on the peripheral wall which surrounds the chamber and overhangs the base, leads to an elevated outlet opening. A vibrating device vibrates the chamber to excite movement of the defective and nondefective articles along the base and onto and up the ramp toward the outlet opening. The container also includes trap openings in the base and ramp to eliminate defective articles from the chamber. Discriminating devices are provided on the ramp that cause defective material to fall from the ramp back onto the base of the chamber. Only the nondefective articles can move on the ramp past the trapping devices toward the outlet of the container for transfer to another processing station.Type: GrantFiled: January 24, 1994Date of Patent: May 30, 1995Assignee: E. R. Squibb & Sons, Inc.Inventor: James A. Wright, Jr.