Patents by Inventor James D. Hayden

James D. Hayden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5405806
    Abstract: A metal silicide interconnect (48, 92, 124) is formed in an integrated circuit using a sacrificial layer (30, 78, 108). In one embodiment a sacrificial layer of titanium nitride (30) is formed overlying a semiconductor substrate (12) and a polysilicon conductive member (20). The sacrificial titanium nitride layer (30) is then patterned and an underlying portion (40) of the semiconductor substrate (12), and a sidewall portion (42) of the polysilicon conductive member (20) are subsequently exposed. A metal layer (46) is deposited and then reacted with the exposed portion 40 of the semiconductor substrate (12) and the exposed sidewall (42) of the polysilicon conductive member (20) to form a metal silicide interconnect (48). The remaining portion of the sacrificial titanium nitride layer (38) is then removed after the metal silicide interconnect (48) has been formed without substantially altering the metal silicide interconnect (48).
    Type: Grant
    Filed: March 29, 1994
    Date of Patent: April 11, 1995
    Assignee: Motorola Inc.
    Inventors: James R. Pfiester, James D. Hayden, Michael P. Woo
  • Patent number: 5398200
    Abstract: A semiconductor memory device is formed having a substrate (12). A diffusion (14) is formed within the substrate (12). A first vertical transistor stack (122) is formed. A second vertical transistor stack (124) is formed. The first vertical transistor stack (122) has a transistor (100) underlying a transistor (104). The second vertical transistor stack (124) has a transistor (102) underlying a transistor (106). The transistors (100 and 104) are connected in series, and the transistors (102 and 106) are connected in series. In a preferred form, transistors (100 and 102) are electrically connected as latch transistors for a semiconductor memory device and transistors (106 and 104) are connected as pass transistors. Two vertical stacks (126 and 128) form electrical interconnections (118 and 120) and resistive devices (134 and 138) for the semiconductor memory device.
    Type: Grant
    Filed: January 18, 1994
    Date of Patent: March 14, 1995
    Assignee: Motorola, Inc.
    Inventors: Carlos A. Mazure, Jon T. Fitch, James D. Hayden, Keith E. Witek
  • Patent number: 5393689
    Abstract: An SRAM cell is formed such that pass channel-stop regions, which are adjacent to the pass transistors, have a higher doping concentration compared to the latch channel-stop regions that are adjacent to the latch transistors. In one embodiment, the pass channel-stop regions are formed using two channel-stop doping steps, whereas the latch channel-stop regions are formed during only one channel-stop doping step. The doping steps may be performed before or after field isolation is formed. The higher doping concentration causes the dopant from the pass channel-stop regions to extend laterally further from the edge of the field isolation compared to the latch channel-stop regions. The process can be adapted for use in almost any type of field isolation process.
    Type: Grant
    Filed: February 28, 1994
    Date of Patent: February 28, 1995
    Assignee: Motorola, Inc.
    Inventors: James R. Pfiester, James D. Hayden
  • Patent number: 5377139
    Abstract: The present invention includes an integrated circuit having a self-aligned contact that makes contact to both a region within the substrate and a capacitor plate of a capacitor that is adjacent to the doped region. The present invention also includes a static-random-access memory cell with a capacitor having a first plate and a second plate. The first plate includes a first plate section of a gate electrode of a transistor, and the second plate includes a first conductive member that is substantially coincident with the first plate section. The second plate may be formed over a gate electrode of a latch transistor or over a word line. The disclosure includes methods of forming the integrated circuit and the static-random-access memory cell.
    Type: Grant
    Filed: December 11, 1992
    Date of Patent: December 27, 1994
    Assignee: Motorola, Inc.
    Inventors: Craig S. Lage, Frank K. Baker, James D. Hayden, Kent J. Cooper
  • Patent number: 5376562
    Abstract: A transistor is formed as either a bipolar transistor (10) or an MOS transistor (11). Each transistor (10 or 11) has a substrate (12). Bipolar transistor (10) has a first current electrode (26) underlying a control electrode (28), and a second current electrode (32) overlying the control electrode (28). MOS transistor (11) has a first current electrode (54) underlying a channel region (56), and a source lightly doped region (58) and a source heavily doped region (60) overlying the channel region (56). A control electrode conductive layer (40) is laterally adjacent a sidewall dielectric layer (48), and sidewall dielectric layer (48) is laterally adjacent channel region (56). Conductive layer (40) functions as a gate electrode for transistor (11). Each of the transistors (10 and 11) is vertically integrated such as in a vertically integrated BiMOS circuit. Transistors (10 and 11) can be electrically isolated by isolation ( 64 and 66).
    Type: Grant
    Filed: May 24, 1993
    Date of Patent: December 27, 1994
    Assignee: Motorola, Inc.
    Inventors: Jon T. Fitch, Carlos A. Mazure, Keith E. Witek, James D. Hayden
  • Patent number: 5374573
    Abstract: A thin film transistor with self-aligned source and drain regions is fabricated, in one embodiment, by forming an opening (124) in a dielectric layer (118) which overlies a substrate (116). A semiconductive sidewall spacer (130) is formed around the perimeter (126) of the opening (124) and adjacent to the sidewall (128) of the opening (124). A first electrode region (120) is electrically coupled to a first portion of the semiconductive sidewall spacer (130) at a first location along the perimeter (126) of the opening (124) which lies only in the second lateral half of the opening (124). A second electrode region (122) is electrically coupled to a second portion of the semiconductive sidewall spacer (130) at a second location along the perimeter (126) of the opening (124) which lies only in the first lateral half of the opening (124). A dielectric layer (132) is formed adjacent to the semiconductive sidewall spacer (130). A control electrode (134) is formed adjacent to the dielectric layer (132).
    Type: Grant
    Filed: February 23, 1994
    Date of Patent: December 20, 1994
    Assignee: Motorola, Inc.
    Inventors: Kent J. Cooper, Scott S. Roth, James D. Hayden, Howard C. Kirsch
  • Patent number: 5373170
    Abstract: A semiconductor memory cell (10) having a symmetrical layout is fabricated in first and second active regions (44, 46) of a semiconductor substrate (11). A first driver transistor (16) resides in the second active region (46), and a second driver transistor (20) resides in the first active region (44). The second driver transistor (20) has a gate electrode (55) overlying a portion of the first active region (44) and is electrically coupled to the second active region (46). A thin-film load transistor (18) resides over the first active region (44), the thin-film load transistor (18) has a thin-film channel layer (23) that overlies, and is aligned with, the gate electrode (55) of the second driver transistor (20). A second portion of the thin-film channel layer (23) extends away from the first active region (44) to form a Vcc node (36). A Vcc interconnect layer (82) overlies the thin-film load transistors and the driver transistors.
    Type: Grant
    Filed: March 15, 1993
    Date of Patent: December 13, 1994
    Assignee: Motorola Inc.
    Inventors: James R. Pfiester, James D. Hayden
  • Patent number: 5371026
    Abstract: A semiconductor device (10) and process provides first and second, electrically coupled MOS transistors (14, 16) in which the current gain of the second MOS transistor (16) is greater than the current gain of the first MOS transistor (14). First and second gate structures (23, 25) are formed on a gate dielectric layer (26) overlying a semiconductor substrate (12). The gate dielectric layer (26) has a uniform thickness in all regions. The current gain differential between the first and second MOS transistors (14, 16) is obtained by selectively forming a dielectric intrusion layer (42) under the gate structure (23) of the first MOS transistor (14), whereas the dielectric layer (26) underlying the gate structure (25) of the second MOS transistor (16) retains the uniform thickness. The dielectric intrusion layer (42) causes a higher channel resistance in the first MOS transistor (14) which retards the current gain in the first MOS transistor (14) relative to the current gain of the second MOS transistor ( 16).
    Type: Grant
    Filed: November 30, 1992
    Date of Patent: December 6, 1994
    Assignee: Motorola Inc.
    Inventors: James D. Hayden, James R. Pfiester, Hsing-Huang Tseng
  • Patent number: 5348903
    Abstract: A semiconductor memory cell (10) includes first and second cross-coupled driver transistors (13, 19) each having a source-drain region and a channel region formed in a first thin-film layer (36, 36'). First and second parallel opposed wordlines (20, 22) overlie a single-crystal semiconductor substrate (12) and the channel region (46) of each driver transistor overlies a portion of an adjacent wordline. A portion of the thin-film layer (36, 36') makes contact to the single-crystal semiconductor substrate (12) adjacent to the opposite wordline. The channel and source-drain regions of first and second load transistors (15, 21) are formed in a second thin-film layer (64) which overlies the driver transistors (13, 19). The load transistors (15, 21) are cross-coupled to the driver transistors (13, 19) through common nodes (31, 33).
    Type: Grant
    Filed: September 3, 1992
    Date of Patent: September 20, 1994
    Assignee: Motorola Inc.
    Inventors: James R. Pfiester, James D. Hayden
  • Patent number: 5334861
    Abstract: A semiconductor memory cell (10) including cross coupled CMOS transistors (12, 14) wherein an N-channel transistor (20) overlies a central portion of each of a first and second active regions (13, 13') at a position intermediate to two word lines (40, 42) which overlie end portions of the active regions (13, 13'). P-channel pull-up transistors (18, 22) overlie the N-channel transistors (16, 20) and share common intermediate gate electrodes (27, 29). Staggered bit line contacts (48, 50) are formed to each active region (13, 13') adjacent to each word line (40, 42) and opposite to the N-type transistors (16, 20). Staggered Vss contacts (52, 54) are provided to each active region (13, 13') adjacent to the word lines (40, 42) and opposite to the bit line contacts (48, 50). A Vss signal is electrically coupled to the N-channel transistors (16, 20) by a doped region (21) formed in the first and second active regions (13, 13' ) which cross under the word lines (40, 42).
    Type: Grant
    Filed: May 19, 1992
    Date of Patent: August 2, 1994
    Assignee: Motorola Inc.
    Inventors: James R. Pfiester, James D. Hayden
  • Patent number: 5330929
    Abstract: The present invention includes a static random access memory cell and a method of forming the memory cell, wherein the memory cell may comprise an active region and a first layer. The active region including a first segment, a second segment, and a third segment, wherein 1) the first segment has an adjacent end and a distal end; 2) the second segment is generally parallel to the first segment, and has an adjacent end and a distal end; and 3) the third segment is generally perpendicular to the first direction, wherein the adjacent end of the first segment lies near one end of the third segment, wherein the adjacent end of the second segment lies near the other end of the third segment. The first layer has the a shape similar to the active region except that the first layer does not lie over the first and second segments near the distal ends.
    Type: Grant
    Filed: October 5, 1992
    Date of Patent: July 19, 1994
    Assignee: Motorola, Inc.
    Inventors: James R. Pfiester, James D. Hayden
  • Patent number: 5324960
    Abstract: A transistor structure (10) has a substrate (12). A first transistor is formed within the substrate (12) having a source region (38), a drain region (30), and a gate electrode formed by a first spacer (26a). A second transistor is formed within the substrate (12) by the source region (38), a drain region (28), and a gate electrode formed by a second spacer (26a). A third transistor is formed overlying the first transistor. The third transistor has a source region (34a), a drain region (34c), a channel region (34b), and a gate electrode formed by the first spacer (26a). A fourth transistor is formed overlying the second transistor. The fourth transistor has a source region (34a), a drain region (34c), a channel region (34b), and a gate electrode formed by the second spacer (26a). The first, second, third, and fourth transistors may be interconnected to form a portion of a compact static random access memory (SRAM) cell.
    Type: Grant
    Filed: January 19, 1993
    Date of Patent: June 28, 1994
    Assignee: Motorola, Inc.
    Inventors: James R. Pfiester, James D. Hayden
  • Patent number: 5308997
    Abstract: A thin film transistor with self-aligned source and drain regions is fabricated, in one embodiment, by forming an opening (124) in a dielectric layer (118) which overlies a substrate (116). A semiconductive sidewall spacer (130) is formed around the perimeter (126) of the opening (124) and adjacent to the sidewall (128) of the opening (124). A first electrode region (120) is electrically coupled to a first portion of the semiconductive sidewall spacer (130) at a first location along the perimeter (126) of the opening (124) which lies only in the second lateral half of the opening (124). A second electrode region (122) is electrically coupled to a second portion of the semiconductive sidewall spacer (130) at a second location along the perimeter (126) of the opening (124) which lies only in the first lateral half of the opening (124). A dielectric layer (132) is formed adjacent to the semiconductive sidewall spacer (130). A control electrode (134) is formed adjacent to the dielectric layer (132).
    Type: Grant
    Filed: June 22, 1992
    Date of Patent: May 3, 1994
    Assignee: Motorola, Inc.
    Inventors: Kent J. Cooper, Scott S. Roth, James D. Hayden, Howard C. Kirsch
  • Patent number: 5308782
    Abstract: A semiconductor memory device is formed having a substrate (12). A diffusion (14) is formed within the substrate (12). A first vertical transistor stack (122) is formed. A second vertical transistor stack (124) is formed. The first vertical transistor stack (122) has a transistor (100) underlying a transistor (104). The second vertical transistor stack (124) has a transistor (102) underlying a transistor (106). The transistors (100 and 104) are connected in series, and the transistors (102 and 106) are connected in series. In a preferred form, transistors (100 and 102) are electrically connected as latch transistors for a semiconductor memory device and transistors (106 and 104) are connected as pass transistors. Two vertical stacks (126 and 128) form electrical interconnections (118 and 120) and resistive devices (134 and 138) for the semiconductor memory device.
    Type: Grant
    Filed: October 26, 1992
    Date of Patent: May 3, 1994
    Assignee: Motorola
    Inventors: Carlos A. Mazure, Jon T. Fitch, James D. Hayden, Keith E. Witek
  • Patent number: 5291053
    Abstract: A semiconductor device having an overlapping memory cell (10), which includes a split wordline configuration and intersects at least a portion of the driver gate electrodes with each wordline. In one embodiment, a semiconductor substrate (11) has first and second active regions (13, 15) therein. A driver transistor (20) is formed in the semiconductor substrate (11), wherein the gate electrode (19) of the driver transistor (20) has a first portion overlying the second active region (15), a second portion extending beyond the first active region, and a third portion contacting the first active region (13). A wordline overlies (42) the second active region (15), wherein a first portion of the wordline forms the gate electrode of an access transistor (34) and a second portion of the wordline intersects the second portion of the driver transistor gate electrode (19) forming an overlap region (31).
    Type: Grant
    Filed: July 6, 1992
    Date of Patent: March 1, 1994
    Assignee: Motorola, Inc.
    Inventors: James R. Pfiester, James D. Hayden
  • Patent number: 5279976
    Abstract: A method is provided for the formation of ultra-shallow boron doped regions in a semiconductor device. In one embodiment of the invention an N-type semiconductor substrate (15) is provided having a first P-type region formed therein. A dielectric layer (16) is formed on the substrate surface and a material layer (17) doped with fluorinated boron is formed on the dielectric layer (16). A second P-type region (22), characterized by a high dopant concentration at the substrate surface and a uniform junction profile, is formed in the substrate adjacent to the first P-type region by diffusing boron atoms from the material layer (17) through the dielectric layer (16) and into the substrate (15). The second P-type region (22) has a very shallow junction depth which is closer to the substrate surface than the first P-type region.
    Type: Grant
    Filed: May 3, 1991
    Date of Patent: January 18, 1994
    Assignee: Motorola, Inc.
    Inventors: James D. Hayden, James R. Pfiester, David Burnett
  • Patent number: 5275964
    Abstract: A pair of first and second thin film transistors (TFTs). The transistors are formed from a first continuous, conductive region (38) and a second continuous, conductive region (39) which underlies the first conductive region (38). The first transistor has a source region (50), a drain region (54), and a channel region (52) created from three distinct and separate regions of conductor region (39). The first transistor has a gate region (53) that overlies the channel region (52). The gate region (53) is formed from a distinct region of conductive region (38). The second transistor has a source region (44), a drain region (48), and a channel region (46) which are created from three distinct and separate regions of conductor region (38). The second transistor has a gate region (47) that underlies the channel region (46). The gate region (47) is formed from a distinct region of conductive region (39).
    Type: Grant
    Filed: May 24, 1993
    Date of Patent: January 4, 1994
    Assignee: Motorola, Inc.
    Inventors: James D. Hayden, Frank K. Baker
  • Patent number: 5262352
    Abstract: An interconnect structure is formed having a substrate (10). A conductive layer (14) is formed overlying the substrate (10). A conductive layer (18) is formed overlying the conductive layer (14). An opening (19) is etched through the conductive layer (18), exposing a top portion of conductive layer (14), and forming a sidewall of the conductive layer (18). An selective isotropic etch procedure is used to laterally recess the sidewall of the conductive layer (18). A sidewall spacer (22) is formed adjacent the sidewall of the conductive layer (18). A conductive layer (24) is formed within opening (19) and adjacent the spacer (22) to form an interconnection between conductive layers (24 and 14). The interconnection is self-aligned, and conductive layer (18) is reliably isolated from the interconnect due to the lateral recessed sidewall of the conductive layer (18).
    Type: Grant
    Filed: August 31, 1992
    Date of Patent: November 16, 1993
    Assignee: Motorola, Inc.
    Inventors: Michael P. Woo, James D. Hayden, Richard D. Sivan, Howard C. Kirsch, Bich-Yen Nguyen
  • Patent number: 5252849
    Abstract: A transistor is formed as either a bipolar transistor (10) or an MOS transistor (11). Each transistor (10 or 11) has a substrate (12). Bipolar transistor (10) has a first current electrode (26) underlying a control electrode (28), and a second current electrode (32) overlying the control electrode (28). MOS transistor (11) has a first current electrode (54) underlying a channel region (56), and a source lightly doped region (58) and a source heavily doped region (60) overlying the channel region (56). A control electrode conductive layer (40) is laterally adjacent a sidewall dielectric layer (48), and sidewall dielectric layer (48) is laterally adjacent channel region (56). Conductive layer (40) functions as a gate electrode for transistor (11). Each of the transistors (10 and 11) is vertically integrated such as in a vertically integrated BiMOS circuit. Transistors (10 and 11) can be electrically isolated by isolation ( 64 and 66).
    Type: Grant
    Filed: March 2, 1992
    Date of Patent: October 12, 1993
    Assignee: Motorola, Inc.
    Inventors: Jon T. Fitch, Carlos A. Mazure, Keith E. Witek, James D. Hayden
  • Patent number: 5243203
    Abstract: A pair of first and second thin film transistors (TFTs). The transistors are formed from a first continuous, conductive region (38) and a second continuous, conductive region (39) which underlies the first conductive region (38). The first transistor has a source region (50), a drain region (54), and a channel region (52) created from three distinct and separate regions of conductor region (39). The first transistor has a gate region (53) that overlies the channel region (52). The gate region (53) is formed from a distinct region of conductive region (38). The second transistor has a source region (44), a drain region (48), and a channel region (46) which are created from three distinct and separate regions of conductor region (38). The second transistor has a gate region (47) that underlies the channel region (46). The gate region (47) is formed from a distinct region of conductive region (39).
    Type: Grant
    Filed: November 4, 1991
    Date of Patent: September 7, 1993
    Assignee: Motorola, Inc.
    Inventors: James D. Hayden, Frank K. Baker