Patents by Inventor James F. Brazdil

James F. Brazdil has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040181072
    Abstract: A process for the manufacture of an improved vanadium antimony oxide oxidation or ammoxidation catalyst which comprises heat treating the catalyst at a temperature above 780° C. in the presence of an oxygen enriched environment. Such catalysts are useful in processes for the ammoxidation of a C3-C5 paraffinic hydrocarbon to its corresponding &agr;-&bgr;-unsaturated nitrile, the ammoxidation of propylene with NH3 and oxygen to acrylonitrile, the ammoxidation of methylpyridine with NH3 and oxygen to make cyanopyridine, the ammoxidation of m-xylene with NH3 and oxygen to make isophthalonitrile, and the oxidation of o-xylene to make phthalic anhydride.
    Type: Application
    Filed: March 5, 2004
    Publication date: September 16, 2004
    Inventors: James F. Brazdil, Fernando Antonio Pessoa Cavalcanti
  • Publication number: 20040171861
    Abstract: Vanadium antimony oxide catalysts useful for the selective oxidation and ammoxidation of paraffins, olefins, and aromatic compounds are manufactured in a process comprising (i) forming a catalyst precursor slurry comprising a vanadium containing compound and an antimony containing compound in a liquid solvent medium which comprises an organic solvent, and (ii) recovering a vanadium antimony oxide from the slurry by drying the slurry in order to remove water and organic solvent.
    Type: Application
    Filed: March 5, 2004
    Publication date: September 2, 2004
    Inventor: James F. Brazdil
  • Publication number: 20040102318
    Abstract: A process for the manufacture of an improved vanadium antimony oxide oxidation or ammoxidation catalyst which comprises heat treating the catalyst at a temperature above 780° C. in the presence of an oxygen enriched environment. Such catalysts are useful in processes for the ammoxidation of a C3-C5 paraffinic hydrocarbon to its corresponding &agr;-&bgr;-unsaturated nitrile, the ammoxidation of propylene with NH3 and oxygen to acrylonitrile, the ammoxidation of methylpyridine with NH3 and oxygen to make cyanopyridine, the ammoxidation of m-xylene with NH3 and oxygen to make isophthalonitrile, and the oxidation of o-xylene to make phthalic anhydride.
    Type: Application
    Filed: November 27, 2002
    Publication date: May 27, 2004
    Inventors: James F. Brazdil, Fernando Antonio Pessoa Cavalcanti
  • Publication number: 20040102319
    Abstract: Vanadium antimony oxide catalysts useful for the selective oxidation and ammoxidation of paraffins, olefins, and aromatic compounds are manufactured in a process comprising (i) forming a catalyst precursor slurry comprising a vanadium containing compound and an antimony containing compound in a liquid solvent medium which comprises an organic solvent, and (ii) recovering a vanadium antimony oxide from the slurry by drying the slurry in order to remove water and organic solvent.
    Type: Application
    Filed: November 27, 2002
    Publication date: May 27, 2004
    Inventor: James F. Brazdil
  • Publication number: 20040102642
    Abstract: A process for the manufacture of an improved iron promoted vanadium antimony oxide catalyst useful in the ammoxidation of propane to acrylonitrile wherein the source of iron (i.e. an iron containing compound such as Fe2O3) employed in the catalyst preparation has a BET surface area greater than 120 m2/gram. Such catalysts are useful in processes for the ammoxidation of a C3-C5 paraffinic hydrocarbon to its corresponding &agr;-&bgr;-unsaturated nitrile, the ammoxidation of propylene with NH3 and oxygen to acrylonitrile, the ammoxidation of methylpyridine with NH3 and oxygen to make cyanopyridine, the ammoxidation of m-xylene with NH3 and oxygen to make isophthalonitrile, and the oxidation of o-xylene to make phthalic anhydride.
    Type: Application
    Filed: November 27, 2002
    Publication date: May 27, 2004
    Inventors: James F. Brazdil, Joseph P. Bartek, Steven S. Trail
  • Patent number: 6262290
    Abstract: The invention is a method for the reduction of ammonia breakthrough during the manufacture of acrylonitrile comprising introducing a hydrocarbon selected from the group consisting of propane and isobutane; ammonia and an oxygen-containing gas into a lower portion of a fluid-bed reactor containing an ammoxidation catalyst to react in the presence of said catalyst to produce acrylonitrile. The method comprises introducing into the reactor at least one C2 to C5 olefin which will react with at least a portion of the unreacted ammonia and oxygen present in the reactor to substantially reduce the amount of ammonia present in the reactor effluent exiting the reactor.
    Type: Grant
    Filed: August 7, 2000
    Date of Patent: July 17, 2001
    Assignee: The Standard Oil Company
    Inventors: James F. Brazdil, Jr., Joseph P. Padolewski
  • Patent number: 5696047
    Abstract: Disclosed is a process comprising the heat treatment of certain V and Sb-containing catalysts at a lower temperature than the previous calcination temperature of the base catalyst to improve catalytic performance; the catalysts resulting from such process; and certain oxidation and ammoxidation reactions in the presence of such a catalyst.
    Type: Grant
    Filed: May 26, 1995
    Date of Patent: December 9, 1997
    Assignee: BP America Inc.
    Inventors: Noel L. Bremer, Linda C. Brazdil, James F. Brazdil, Fernando A. P. Cavalcanti
  • Patent number: 5693587
    Abstract: A method of making a promoted vanadium antimony oxide catalyst comprising reacting a monoperoxovanadium ion while in aqueous solution with the antimony compound wherein the improvement comprises adding the antimony compound to the aqueous slurry in at least two steps.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: December 2, 1997
    Assignee: The Standard Oil Company
    Inventors: James F. Brazdil, Jr., Fernando A. P. Cavalcanti, Joseph P. Padolewski
  • Patent number: 5675057
    Abstract: Disclosed is a process comprising the heat treatment of certain V and Sb-containing catalysts at a lower temperature than the previous calcination temperature of the base catalyst to improve catalytic performance; the catalysts resulting from such process; and certain oxidation and ammoxidation reactions in the presence of such a catalyst.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: October 7, 1997
    Assignee: BP America Inc.
    Inventors: Noel L. Bremer, Linda C. Brazdil, James F. Brazdil, Fernando A. P. Cavalcanti
  • Patent number: 5576469
    Abstract: The process for the ammoxidation of a C.sub.3 to C.sub.5 paraffinic hydrocarbon to its corresponding .alpha.,.beta.-unsaturated hydrocarbon comprising reacting the C.sub.3 to C.sub.5 paraffinic hydrocarbon with ammonia and oxygen in a fluid bed reactor at a temperature of between 250.degree. C. to 600.degree. C. in the presence of a catalyst having the empirical formula as follows:V.sub.v Sb.sub.m A.sub.a D.sub.d O.sub.xwherein A when present is Sn and/or Ti;D when present is one or more of Li, Mg, Na, Ca, Sr, Ba, Co, Fe, Cr, Ga, Ni, Zn, Ge, Nb, Zr, Mo, W, Cu, Te, Ta, Se, Bi, Ce, In, As, B, Al, P and Mn; andwherein v is 1, m is 0.5-75, a is 0 to 25, d is 0 to 25, and x is determined by the oxidation state of the cations present,and a minor quantity of an halogen-containing component, preferably characterized by the following formula:R--X or X.sub.2where R=Hydrogen, C.sub.1 -C.sub.20 alkyland X=F, Cl, Br, I or mixtures thereof.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: November 19, 1996
    Assignee: The Standard Oil Co.
    Inventors: James F. Brazdil, Jr., Fernando A. P. Cavalcanti
  • Patent number: 5498588
    Abstract: The process of manufacturing a catalyst having the following empirical formula:VSb.sub.m A.sub.a D.sub.d O.sub.xwhere A is one or more of Ti, Sn, Fe, Cr, Ga, Li, Mg, Ca, Sr, Ba, Co, Ni, Zn, Ge, Nb, Zr, Mo, W, Cu, Te, Ta, Se, Bi, Ce, In, As, B and Mn,D is one or more of Li, Ag, Fe, Co, Cu, Cr, Mn, (VO).sup.2+, (PW.sub.12 O.sub.40).sup.3- and (PMo.sub.12 O.sub.40).sup.3-m is from about 0.5 to 10a is 0.01 to 10d is 0.0001 to 2.0, preferably 0.0001 to 0.1;x=number of oxygen ions necessary to satisfy the valency requirementcomprising forming a catalyst precursor having the formula VSbmAaOx wherein m, A, a and x are defined above, adding at least one D element to the surface of said catalyst precursor and calcining the surface modified catalyst precursor to produce said catalyst.
    Type: Grant
    Filed: September 9, 1994
    Date of Patent: March 12, 1996
    Assignee: The Standard Oil Company
    Inventors: James F. Brazdil, Fernando A. P. Cavalcanti
  • Patent number: 5432141
    Abstract: This invention relates to a process for preparing an attrition resistant vanadium-antimony oxide catalyst by adding to a vanadium-antimony oxide catalyst slurry a lithium compound which upon contact with the aqueous catalyst slurry provides hydroxide, such as lithium hydroxide or lithium carbonate. The process comprises the steps of preparing a catalyst slurry comprising vanadium oxide and antimony oxide, adding the lithium compound to the catalyst slurry, concentrating the catalyst slurry to increase the solids content of the slurry, and drying the catalyst slurry to form attrition resistant particles of catalyst.
    Type: Grant
    Filed: March 15, 1994
    Date of Patent: July 11, 1995
    Assignee: The Standard Oil Company
    Inventors: James F. Brazdil, Jr., Joseph P. Bartek
  • Patent number: 5214016
    Abstract: Disclosed is a method of making a catalyst containing vanadium antimony and tin in the oxide state which comprises making an aqueous slurry of a mixture of source batch materials comprising compounds of the elements to be included in the final catalyst followed by drying and heat calcining the mixture to an active catalyst, using as the source batch material for tin a stannous salt of a C.sub.1 to C.sub.18 acyclic, monocarboxylic acid containing no ethylenic or acetylenic carbon-to-carbon unsaturation.
    Type: Grant
    Filed: April 2, 1992
    Date of Patent: May 25, 1993
    Assignee: The Standard Oil Company
    Inventors: James F. Brazdil, Ian R. Little, Joseph B. Hazen
  • Patent number: 5094989
    Abstract: Disclosed is a process for making an activated antimony and vanadium-containing catalyst in oxide form having an atomic ratio of Sb:V in the range from 0.8-4, which comprises calcining such an oxidic vanadium and antimony-containing composition at a temperature of over 750.degree. C., and thereafter contacting said calcined catalyst with a hydroxy compound in liquid form selected from (1) cyclohexanol, (2) cyclopentanol, (3) a monohydroxy, acyclic hydrocarbon having 1-8 C atoms, and (4) a dihydroxy, acyclic hydrocarbon having 2-4 carbon atoms, and separating as a liquid said compound from said catalyst insofar as it is present beyond the amount wetting said catalyst, and thereafter drying said catalyst.
    Type: Grant
    Filed: December 21, 1990
    Date of Patent: March 10, 1992
    Assignee: The Standard Oil Company
    Inventors: Charles S. Lynch, Linda C. Glaeser, James F. Brazdil, Jr., Mark A. Toft
  • Patent number: 5082816
    Abstract: Catalysts comprising lead doped zirconium compounds are particularly effective in an oxidative process for upgrading low molecular weight alkanes to higher molecular weight hydrocarbons, and especially for upgrading methane to form ethane and ethylene. The catalysts can be employed in a process performed at elevated temperatures and in the presence or absence of gaseous oxygen. The catalysts are substantially free of PbO and uncombined Pb and remain stable for long periods of time.
    Type: Grant
    Filed: July 23, 1990
    Date of Patent: January 21, 1992
    Assignee: The Standard Oil Company
    Inventors: Raymond G. Teller, James F. Brazdil, Jr., Joseph P. Bartek, Ann M. Brussee
  • Patent number: 5079207
    Abstract: Disclosed is a process for making an .alpha., .beta.-unsaturated monoitrile by the catalytic reaction of a paraffin containing 3-5 carbon atoms with molecular oxygen and ammonia by catalytic contact of the foregoing reactants in a reaction zone with a metal oxide catalyst containing the elements indicated by the empirical formula,V.sub.v A.sub.a D.sub.d Sn.sub.m Sb.sub.n Cu.sub.c O.sub.x (formula 1)in the relative atomic proportions indicated by the subscripts, whereA is selected from Te and BiD is one or more optional elements selected from Mo, W, Ti, Ge, Ce, La, Cr, Mn, Mg, Ca, Co, Ni, Fe, Nb, Ta, Ag, Zn, Cd, B, P, Na, K and Cs, anda is 0.001 to 30d is zero to 30c is 0.001 to 30m is 0.1 to 60n is 0.1 to 60n/v is>12 and<100m+n is.gtoreq.v+a+c+d, andx is determined by the valence requirements of the elements present, andwherein the reactants fed to the reaction zone contain a mole ratio of said paraffin:NH.sub.3 in the range from 2 to 16 and a mole ratio of said paraffin:O.sub.
    Type: Grant
    Filed: December 3, 1990
    Date of Patent: January 7, 1992
    Assignee: The Standard Oil Company
    Inventors: James F. Brazdil, Linda C. Glaeser, Mark A. Toft
  • Patent number: 5068215
    Abstract: A multi-component oxide catalyst comprising zinc and an alkali metal is described which is useful particularly for converting methane and/or natural gas to higher molecular weight hydrocarbon products such as ethane and ethylene. The catalyst is characterized by the formulaZn.sub.a A.sub.b M.sub.c M'.sub.d O.sub.xwhereinA is Li, Na, K, or mixtures thereof;M is Al, Ga, Cr, La, Y, Sc, V, Nb, Ta, Cu or mixtures thereof;M' is Cs, Rb, Mg, Ca, Sr, Ba, Sm, Pb, Mn, Sb, P, Sn, Bi, Ti, Zr, Hf, or mixtures thereof;a is from about 1 to about 20;b is from about 0.1 to about 20;c is from about 0 to about 5;d is from about 0 to about 20; andx is a number needed to fulfill the valence requirements of the other elements; provided that(i) at least one of c and d is at least 0.1; and(ii) when M' is Sn, c must be at least 0.1.
    Type: Grant
    Filed: December 11, 1989
    Date of Patent: November 26, 1991
    Assignee: Standard Oil Company
    Inventors: Joseph P. Bartek, James F. Brazdil, Jr., John M. Hupp, Robert K. Grasselli
  • Patent number: 5008427
    Abstract: Disclosed is a process for making an .alpha., .beta.-unsaturated mononitrile, acrylonitrile or methacrylonitrile, by the catalytic reaction in the vapor phase of a paraffin selected from propane and isobutane with molecular oxygen and ammonia and optionally a gaseous diluent, by catalytic contact of the foregoing reactants in a reaction zone with a catalyst, the feed to said reaction zone containing a mole ratio of said paraffin to NH.sub.3 in the rnage from 2.5 to 16 and a mole ratio of said paraffin to O.sub.2 in the range from 1 to 10, said catalyst having the elements and the proportions indicated by the empirical formula:VSb.sub.m A.sub.a D.sub.d O.sub.xwhereA is one or more Ti, Sn, Fe, Cr, GaD is one or more Li, Mg, Ca, Sr, Ba, Co, Ni, Zn, Ge, Nb, Zr, Mo, W, Cu, Te, Ta, Se, Bi, Ce, In, As, B, Mn andm is 0.8-4a is 0.01-2d is 0-2x is determined by the oxidation state of the cations present,which catalyst has been heated at a calcination temperature of at least 780.degree. C.
    Type: Grant
    Filed: December 23, 1988
    Date of Patent: April 16, 1991
    Assignee: The Standard Oil Company
    Inventors: James F. Brazdil, Jr., Mark A. Toft, Linda C. Glaeser
  • Patent number: 4960921
    Abstract: Certain novel multiply promoted Mn-Sb oxides are superior catalysts for the ammoxidation of olefins to the corresponding unsaturated nitriles, the selective oxidation of olefins to unsaturated aldehydes and acids, and the oxydehydrogenation of olefins to diolefins.
    Type: Grant
    Filed: February 12, 1990
    Date of Patent: October 2, 1990
    Assignee: The Standard Oil Company
    Inventors: Dev. D. Suresh, Robert K. Grasselli, Frances I. Ratka, James F. Brazdil
  • Patent number: 4939286
    Abstract: Antimony-promoted bismuth cerium molybdate catalysts are promoted with additional elements.
    Type: Grant
    Filed: July 12, 1988
    Date of Patent: July 3, 1990
    Assignee: The Standard Oil Company
    Inventors: James F. Brazdil, Linda C. Glaeser, Robert K. Grasselli