Patents by Inventor James G. Deak

James G. Deak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7411262
    Abstract: The present invention seeks to reduce the amount of current required for a write operation by using a process for forming the read conductor within a recessed write conductor, the write conductor itself formed within a trench of an insulating layer. The present invention protects the MTJ from the voltages created by the write conductor by isolating the write conductor and enabling the reduction of current necessary to write a bit of information.
    Type: Grant
    Filed: August 29, 2005
    Date of Patent: August 12, 2008
    Assignee: Micron Technology, Inc.
    Inventor: James G. Deak
  • Patent number: 7385842
    Abstract: A magnetic memory element includes a sense structure, a tunnel barrier adjacent the sense structure, and a synthetic antiferromagnet (SAF) adjacent the tunnel barrier on a side opposite the sense structure. The SAF includes an antiferromagnetic structure adjacent a ferromagnetic seed layer. The ferromagnetic seed layer provides a texture so that the antiferromagnetic structure deposited on the ferromagnetic seed layer has reduced pinning field dispersion.
    Type: Grant
    Filed: May 9, 2006
    Date of Patent: June 10, 2008
    Assignee: Micron Technology, Inc.
    Inventor: James G. Deak
  • Patent number: 7381573
    Abstract: The present invention seeks to reduce the amount of current required for a write operation by using a process for forming the read conductor within a recessed write conductor, the write conductor itself formed within a trench of an insulating layer. The present invention protects the MTJ from the voltages created by the write conductor by isolating the write conductor and enabling the reduction of current necessary to write a bit of information.
    Type: Grant
    Filed: January 3, 2005
    Date of Patent: June 3, 2008
    Assignee: Micron Technology, Inc.
    Inventor: James G. Deak
  • Patent number: 7358553
    Abstract: An MRAM device includes an array of magnetic memory cells having an upper conductive layer and a lower conductive layer separated by a barrier layer. To reduce the likelihood of electrical shorting across the barrier layers of the memory cells, spacers can be formed around the upper conductive layer and, after the layers of the magnetic memory cells have been etched, the memory cells can be oxidized to transform any conductive particles that are deposited along the sidewalls of the memory cells as byproducts of the etching process into nonconductive particles. Alternatively, the lower conductive layer can be repeatedly subjected to partial oxidation and partial etching steps such that only nonconductive particles can be thrown up along the sidewalls of the memory cells as byproducts of the etching process.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: April 15, 2008
    Assignee: Micron Technology, Inc.
    Inventors: Joel A. Drewes, James G. Deak
  • Patent number: 7306954
    Abstract: MRAM structures employ the magnetic properties of layered magnetic and non-magnetic materials to read memory storage logic states. Improvements in switching reliability may be achieved by altering the shape of the layered magnetic stack structure. Forming recessed regions with sloped interior walls in an ILD layer prior to depositing the layered magnetic stack structure produces a significant advantage over the prior art by allowing a CMP process to be used to define the magnetic bit shapes. The sloped interior walls of the recessed regions, which is singular to the present invention, provide a unique formation and shaping of the magnetic stack structure, which may reduce the magnetic coupling effect between magnetic layers of the magnetic stack structure.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: December 11, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Hasan Nejad, James G. Deak
  • Patent number: 7279762
    Abstract: The invention includes a construction comprising an MRAM device between a pair of conductive lines. Each of the conductive lines can generate a magnetic field encompassing at least a portion of the MRAM device. Each of the conductive lines is surrounded on three sides by magnetic material to concentrate the magnetic fields generated by the conductive lines at the MRAM device. The invention also includes a method of forming an assembly containing MRAM devices. A plurality of MRAM devices are formed over a substrate. An electrically conductive material is formed over the MRAM devices, and patterned into a plurality of lines. The lines are in a one-to-one correspondence with the MRAM devices and are spaced from one another. After the conductive material is patterned into lines, a magnetic material is formed to extend over the lines and within spaces between the lines.
    Type: Grant
    Filed: December 5, 2005
    Date of Patent: October 9, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Hasan Nejad, James G. Deak
  • Patent number: 7274591
    Abstract: A magnetic random access memory (MRAM) is compensated for write current shunting by varying the bit size of each MRAM cell with position along the write line. The MRAM includes a plurality of magnetic tunnel junction memory cells arranged in an array of columns and rows. The width of each memory cell increases along a write line to compensate for write current shunting.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: September 25, 2007
    Assignee: Micron Technology, Inc.
    Inventor: James G. Deak
  • Patent number: 7230844
    Abstract: A ferromagnetic thin-film based digital memory having a substrate supporting bit structures that are electrically interconnected with information storage and retrieval circuitry and having first and second oppositely oriented relatively fixed magnetization layers and a ferromagnetic material film in which a characteristic magnetic property is substantially maintained below an associated critical temperature above which such magnetic property is not maintained. This ferromagnetic material film is separated from the first and second fixed magnetization films by corresponding layers of a nonmagnetic materials one being electrically insulative and that one remaining being electrically conductive. Each bit structure has an interconnection structure providing electrical contact thereto at a contact surface thereof substantially parallel to the intermediate layer positioned between the first contact surface and the substrate.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: June 12, 2007
    Assignee: NVE Corporation
    Inventor: James G. Deak
  • Patent number: 7196882
    Abstract: The present invention provides a magnetic tunnel junction memory element comprising two pinned ferromagnetic layers having magnetic orientations pointing in opposite directions and a sense layer arranged between the two pinned ferromagnetic layers and separated from each by a nonmagnetic tunnel barrier layer. The invention also provides methods of fabricating magnetic tunnel junction memory elements as well as magnetoresistive memory devices and processor systems comprising such memory elements.
    Type: Grant
    Filed: July 23, 2002
    Date of Patent: March 27, 2007
    Assignee: Micron Technology, Inc.
    Inventor: James G. Deak
  • Patent number: 7183621
    Abstract: The present invention provides a method of forming an MRAM cell which minimizes the occurrence of electrical shorts during fabrication. A first conductor in a trench is provided in an insulating layer and an upper surface of the insulating layer and the first conductor is planarized. Then, a dielectric layer is deposited to a thickness slightly greater than the desired final thickness of a sense layer, which is formed later. The dielectric layer is then patterned and etched to form an opening for the cell shapes over the first conductor. Then, a permalloy is electroplated in the cell shapes to form the sense layer. The sense layer and dielectric layer are flattened and then a nonmagnetic tunnel barrier layer is deposited. Finally, the pinned layer is formed over the tunnel barrier layer.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: February 27, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Hasan Nejad, James G. Deak
  • Patent number: 7160738
    Abstract: A method is provided for fabricating a fixed layer for a MRAM device. The method includes providing the fixed layer. The fixed layer includes an antiferromagnetic pinning layer over a substrate and a ferromagnetic pinned layer over the pinning layer, the pinned layer having a first thickness. The fixed layer further includes a spacer layer over the pinned layer, and a ferromagnetic reference layer over the spacer layer, the reference layer having a second thickness. The method further includes annealing the fixed layer using a temporal temperature/magnetic field profile, the profile having a maximum magnetic field magnitude (Hanneal). The profile is selected based on the first thickness of the pinned layer and the second thickness of the reference layer.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: January 9, 2007
    Assignee: Micron Technology, Inc.
    Inventor: James G. Deak
  • Patent number: 7148531
    Abstract: A ferromagnetic thin-film based digital memory having a substrate formed of a base supporting an electrically insulating material primary substrate layer in turn supporting a plurality of current control devices each having an interconnection arrangement with each of said plurality of current control devices being separated from one another by spacer material therebetween and being electrically interconnected with information storage and retrieval circuitry. A plurality of bit structures are each supported on and electrically connected to a said interconnection arrangement of a corresponding one of said plurality of current control devices and have magnetic material films in which a characteristic magnetic property is substantially maintained below an associated critical temperature above which such magnetic property is not maintained of which two are separated by at least one intermediate layer of a nonmagnetic material having two major surfaces on opposite sides thereof.
    Type: Grant
    Filed: April 28, 2005
    Date of Patent: December 12, 2006
    Assignee: NVE Corporation
    Inventors: James M. Daughton, James G. Deak, Arthur V. Pohm
  • Patent number: 7112454
    Abstract: An MRAM device includes an array of magnetic memory cells having an upper conductive layer and a lower conductive layer separated by a barrier layer. To reduce the likelihood of electrical shorting across the barrier layers of the memory cells, spacers can be formed around the upper conductive layer and, after the layers of the magnetic memory cells have been etched, the memory cells can be oxidized to transform any conductive particles that are deposited along the sidewalls of the memory cells as byproducts of the etching process into nonconductive particles. Alternatively, the lower conductive layer can be repeatedly subjected to partial oxidation and partial etching steps such that only nonconductive particles can be thrown up along the sidewalls of the memory cells as byproducts of the etching process.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: September 26, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Joel A. Drewes, James G. Deak
  • Patent number: 7083988
    Abstract: A method is provided for fabricating a fixed layer for a MRAM device. The method includes providing the fixed layer. The fixed layer includes an antiferromagnetic pinning layer over a substrate and a ferromagnetic pinned layer over the pinning layer, the pinned layer having a first thickness. The fixed layer further includes a spacer layer over the pinned layer, and a ferromagnetic reference layer over the spacer layer, the reference layer having a second thickness. The method further includes annealing the fixed layer using a temporal temperature/magnetic field profile, the profile having a maximum magnetic field magnitude (Hanneal). The profile is selected based on the first thickness of the pinned layer and the second thickness of the reference layer.
    Type: Grant
    Filed: January 26, 2004
    Date of Patent: August 1, 2006
    Assignee: Micron Technology, Inc.
    Inventor: James G. Deak
  • Patent number: 7075819
    Abstract: A closed flux magnetic memory cell has a ferromagnetic pinned structure and a ferromagnetic free structure. Data is stored by controlling the relative magnetization between the pinned and free structures. The free structure is formed as a horizontally extending toroid, or tube, that is insulated from the pinned structure. A first conductive line passes through the center of the free structure while a second conductive line is connected to the pinned structure. A third conductive line can be formed through the free structure. This line is insulated from the toroid and the first conductor. The third conductive line can also be located outside the free structure. In operation of one embodiment, the first and third conductive lines are used to control the magnetized direction of the free structure. A resistance between the first and second conductive lines defines the data stored in the memory cell.
    Type: Grant
    Filed: March 28, 2005
    Date of Patent: July 11, 2006
    Assignee: Micron Technology, Inc.
    Inventor: James G. Deak
  • Patent number: 7072209
    Abstract: A magnetic memory element includes a sense structure, a tunnel barrier adjacent the sense structure, and a synthetic antiferromagnet (SAF) adjacent the tunnel barrier on a side opposite the sense structure. The SAF includes an antiferromagnetic structure adjacent a ferromagnetic seed layer. The ferromagnetic seed layer provides a texture so that the antiferromagnetic structure deposited on the ferromagnetic seed layer has reduced pinning field dispersion.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: July 4, 2006
    Assignee: Micron Technology, Inc.
    Inventor: James G. Deak
  • Patent number: 7038286
    Abstract: The invention includes a construction comprising an MRAM device between a pair of conductive lines. Each of the conductive lines can generate a magnetic field encompassing at least a portion of the MRAM device. Each of the conductive lines is surrounded on three sides by magnetic material to concentrate the magnetic fields generated by the conductive lines at the MRAM device. The invention also includes a method of forming an assembly containing MRAM devices. A plurality of MRAM devices are formed over a substrate. An electrically conductive material is formed over the MRAM devices, and patterned into a plurality of lines. The lines are in a one-to-one correspondence with the MRAM devices and are spaced from one another. After the conductive material is patterned into lines, a magnetic material is formed to extend over the lines and within spaces between the lines.
    Type: Grant
    Filed: August 17, 2004
    Date of Patent: May 2, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Hasan Nejad, James G. Deak
  • Patent number: 7009874
    Abstract: Systems, devices and methods are provided for magnetic memory elements with low remanence flux concentrators. Improved bit yield is attributable to reduced remanence in the flux concentrator. Remanence provides the memory element with a biasing magnetic field. The flux concentrator includes anisotropy aligned with an appropriate conductor. One aspect of the present subject matter is a memory cell. One memory cell embodiment includes a magnetic memory element and a flux concentrator operably positioned with respect to a conductor. The conductor is adapted to provide a current-induced magnetic flux to the magnetic memory element. The flux concentrator includes an easy axis of magnetization aligned with the conductor and a hard axis of magnetization orthogonal to the easy axis of magnetization. Other aspects are provided herein.
    Type: Grant
    Filed: September 2, 2004
    Date of Patent: March 7, 2006
    Assignee: Micron Technology, Inc.
    Inventor: James G. Deak
  • Patent number: 7002228
    Abstract: A magnetic random access memory device including a pinned layer having a diffusion barrier, a sense layer, and a tunnel barrier to electrically couple the pinned layer to the sense layer. A method for forming a magnetic random access memory device including forming, on a substrate, a sense layer, forming a tunnel barrier on the sense layer, forming a pinned layer on the tunnel barrier, where the pinned layer includes a diffusion barrier to stop manganese atoms from diffusing to the interface of the tunnel barrier, and annealing the substrate, the sense layer, the tunnel barrier and the pinned layer. The diffusion barrier can include a native oxide having a thickness up to about seven angstroms or an aluminum oxide having a thickness up to about seven angstroms.
    Type: Grant
    Filed: February 18, 2003
    Date of Patent: February 21, 2006
    Assignee: Micron Technology, Inc.
    Inventors: James G. Deak, Maciej M. Kowalewski
  • Patent number: 6962833
    Abstract: Structures and methods for providing magnetic shielding for integrated circuits are disclosed. The shielding comprises a foil or sheet of magnetically permeable material applied to an outer surface of a molded (e.g., epoxy) integrated circuit package. The foil can be held in place by adhesive or by mechanical means. The thickness of the shielding can be tailored to a customer's specific needs, and can be applied after all high temperature processing, such that a degaussed shield can be provided despite use of strong magnetic fields during high temperature processing, which fields are employed to maintain pinned magnetic layers within the integrated circuit.
    Type: Grant
    Filed: November 21, 2003
    Date of Patent: November 8, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Mark E. Tuttle, James G. Deak