Patents by Inventor James Geza Deak

James Geza Deak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11536779
    Abstract: A magnetoresistive Z-axis gradient sensor chip, which is used to detect the gradient in the XY plane of a Z-axis magnetic field component generated by a magnetic medium; the sensor chip comprises a Si substrate, a collection of two or two groups of flux guide devices separated a distance Lg and an arrangement of electrically interconnected magnetoresistive sensor units. The magnetoresistive sensor units are located on the Si substrate and located above or below the edge of the flux guide devices as well; the flux guide devices convert the component of the Z-axis magnetic field into the direction parallel to the surface of the Si substrate along the sensing axis direction of the magnetoresistive sensing units. The magnetoresistive sensor units are electrically interconnected into a half bridge or a full bridge gradiometer arrangement, wherein the opposite bridge arms are separated by distance Lg. This sensor chip can be utilized with a PCB or in combination with a PCB plus back-bias magnet with casing.
    Type: Grant
    Filed: May 14, 2015
    Date of Patent: December 27, 2022
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 11512939
    Abstract: A single-chip two-axis magnetoresistive angle sensor comprises a substrate located in an X-Y plane, a push-pull X-axis magnetoresistive angle sensor and a push-pull Y-axis magnetoresistive angle sensor located on the substrate. The push-pull X-axis magnetoresistive angle sensor comprises an X push arm and an X pull arm. The push-pull Y-axis magnetoresistive angle sensor comprises a Y push arm and a Y pull arm. Each of the X push, X pull, Y push arm, and Y pull arms comprises at least one magnetoresistive angle sensing array unit. The magnetic field sensing directions of the magnetoresistive angle sensing array units of the X push, X pull, Y push, and Y pull arms are along +X, ?X, +Y and ?Y directions respectively. Each magnetoresistive sensing unit comprises a TMR or GMR spin-valve having the same magnetic multi-layer film structure.
    Type: Grant
    Filed: February 14, 2018
    Date of Patent: November 29, 2022
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Publication number: 20220373513
    Abstract: A hydrogen gas sensor utilizing electrically isolated tunneling magnetoresistive stress sensing elements is disclosed. The hydrogen gas sensor comprises: a deformable substrate, a magnetoresistive bridge stress sensor located on the deformable substrate, an electrical isolation layer covering the magnetoresistive bridge stress sensor, a magnetic shielding layer located on the electrical isolation layer, and a hydrogen sensing layer located above the deformable substrate. The hydrogen sensing layer is located in a plane perpendicular to the deformation of the substrate covering the electrical isolation layer. The hydrogen sensing layer is used for absorbing or desorbing hydrogen gas to generate expansion or contraction deformation and cause a stress change of the deformable substrate. The magnetoresistive bridge stress sensor is used for measuring a hydrogen gas concentration utilizing the stress change of the deformable substrate. It results in a hydrogen gas sensor with improved performance.
    Type: Application
    Filed: October 27, 2020
    Publication date: November 24, 2022
    Applicant: MultiDimension Technology Co., Ltd.
    Inventors: James Geza DEAK, Zhimin ZHOU
  • Publication number: 20220342012
    Abstract: A hydrogen gas sensor utilizing electrically isolated tunneling magnetoresistive sensing elements is provided. The hydrogen gas sensor comprises: a substrate in an X-Y plane, tunneling magnetoresistive sensors located on the substrate, and a hydrogen sensing layer located on the tunnel magnetoresistive sensors. The hydrogen sensing layer and the tunneling magnetoresistive sensor are electrically isolated from each other. The hydrogen sensing layer includes a multi-layer thin film structure formed from palladium layers and ferromagnetic layers, wherein the palladium layers are used for absorbing hydrogen in the air that causes a change in the orientation angle of a magnetic anisotropy field in each of the ferromagnetic layers in the X-Z plane into an X-axis direction. The tunnel magnetoresistive sensors are used for detecting a magnetic field signal of the hydrogen sensing layer, wherein the magnetic signal determines the hydrogen gas concentration. This hydrogen gas sensor ensures measurement safety.
    Type: Application
    Filed: August 18, 2020
    Publication date: October 27, 2022
    Applicant: MultiDimension Technology Co., Ltd.
    Inventors: James Geza DEAK, Zhimin ZHOU
  • Patent number: 11408949
    Abstract: A magnetoresistive hydrogen sensor and sensing method thereof, wherein the hydrogen sensor comprises a substrate located in an X-Y plane, magnetoresistive sensing units and magnetoresistive reference units located on the substrate. The magnetoresistive sensing units are electrically connected to form a sensing arm, and the magnetoresistive reference units are electrically connected to form a reference arm. The sensing arm and the reference arm are electrically interconnected to form a referenced bridge structure. The magnetoresistive sensing units and the magnetoresistive reference units may be AMR units having the same magnetic multilayer thin film structure, GMR spin valves, or GMR multilayer film stacks having the same magnetic multilayer thin film structure. The magnetoresistive sensing units and the magnetoresistive reference units are respectively covered with a Pd layer, and a passivating insulation layer is deposited over the Pd layer of the magnetoresistive reference units.
    Type: Grant
    Filed: November 13, 2019
    Date of Patent: August 9, 2022
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Xuanzuo Liu
  • Publication number: 20220120601
    Abstract: Disclosed is a digital liquid level sensor based on a magnetoresistive sensor cross-point array, including: a plurality of TMR magnetic sensor chips; a microcontroller, a row decoder, and a column decoder, wherein the microcontroller is electrically connected to the row decoder and the column decoder, the TMR magnetic sensor chips include a plurality of MTJ elements, diodes are connected between each row of MTJ elements and a row lead or a column lead, the TMR magnetic sensor chips are addressed by means of data decoded by the row decoder and the column decoder and on the basis of the equation Address=m+[M×(n?1)], Address representing an address value, and m representing the value of a current row, and the microcontroller is used for scanning addresses of the TMR magnetic sensor chips for the address of an MTJ element in the highest active state, converting the address value into a liquid level value in a linear proportional relationship therewith, and transmitting the liquid level value to an output interfac
    Type: Application
    Filed: February 26, 2020
    Publication date: April 21, 2022
    Inventors: James Geza Deak, Elamparithi Visvanathan
  • Patent number: 11300637
    Abstract: A resettable bipolar switch sensor is disclosed which comprises a bipolar magnetic hysteresis switch sensor, a reset coil, an ASIC switch circuit and a power reset circuit. The bipolar magnetic hysteresis switch sensor comprises a substrate and a magnetoresistive sensing arm located on the substrate. The magnetoresistive sensing arm is of a two-port structure composed of one or more magnetoresistive sensing unit strings arranged in series, parallel, or series-parallel. The magnetization direction of a free layer of a TMR magnetoresistive sensing unit is determined by an anisotropy field Hk, and together with the magnetization direction of a reference layer and the applied magnetic field, it can orient in an N or S direction. The reset coil is located between the substrate along with the magnetoresistive sensing unit, or it is located on a lead frame below the substrate. The direction of the reset magnetic field is either N or S.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: April 12, 2022
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 11287490
    Abstract: The present invention relates to a magnetoresistive sensor for measuring a magnetic field. A calculation of the sensitivity to external magnetic fields is provided, and it is shown to be related to the shape anisotropy of the magnetoresistive sensing elements. Moreover, it is shown that sensitivity may be made highest when the shape of the magnetoresistive element is long parallel to the sensing axis, and a magnetic bias field strong enough to saturate the magnetoresistive element's magnetization, Hcross, is applied perpendicular to the sensing axis. A monolithic permanent magnet is provided to generate the Hcross and it may be applied at an angle in order to counteract non-ideal fields along the sense axis direction. The high sensitivity magnetoresistive element can be used in many electrical form-factors. Six exemplary bridge configurations are described herein.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: March 29, 2022
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Insik Jin, Weifeng Shen, Songsheng Xue
  • Patent number: 11287491
    Abstract: A modulated magnetoresistive sensor consists of a substrate located on a substrate in an XY plane, magnetoresistive sensing elements, a modulator, electrical connectors, an electrical insulating layer, and bonding pads. The sensing direction of the magnetoresistive sensing elements is parallel to the X axis. The magnetoresistive sensing elements are connected in series into a magnetoresistive sensing element string. The modulator is comprised of multiple elongated modulating assemblies. The elongated modulating assemblies consist of three layers—FM1 layer, NM layer, and FM2 layer. The ends of the elongated modulating assemblies are electrically connected to form a serpentine current path. The electrical insulating layer is set between the elongated modulating assemblies and the magnetoresistive sensing elements to separate the elongated modulating assemblies from the magnetoresistive sensing elements.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: March 29, 2022
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 11255927
    Abstract: A three-axis upstream-modulated low-noise magnetoresistive sensor comprises an X-axis magnetoresistive sensor, a Y-axis magnetoresistive sensor, and a Z-axis magnetoresistive sensor, wherein the X, Y, and Z-axis magnetoresistive sensors respectively comprise X, Y, and Z-axis magnetoresistive sensing unit arrays, X, Y, and Z-axis soft ferromagnetic flux concentrator arrays, and X, Y, and Z-axis modulator wire arrays. The X, Y, and Z-axis magnetoresistive sensing unit arrays are electrically interconnected into X, Y, and Z-axis magnetoresistive sensing bridges respectively. The X, Y, and Z-axis modulator wire arrays are electrically interconnected into individual two-port X, Y, and Z-axis excitation coils. In order to measure external magnetic fields, the two-port X, Y, and Z-axis excitation coils are separately supplied with high-frequency alternating current at a frequency f, from a current supply.
    Type: Grant
    Filed: January 29, 2019
    Date of Patent: February 22, 2022
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Publication number: 20220011385
    Abstract: A magnetoresistive hydrogen sensor and sensing method thereof, wherein the hydrogen sensor comprises a substrate located in an X-Y plane, magnetoresistive sensing units and magnetoresistive reference units located on the substrate. The magnetoresistive sensing units are electrically connected to form a sensing arm, and the magnetoresistive reference units are electrically connected to form a reference arm. The sensing arm and the reference arm are electrically interconnected to form a referenced bridge structure. The magnetoresistive sensing units and the magnetoresistive reference units may be AMR units having the same magnetic multilayer thin film structure, GMR spin valves, or GMR multilayer film stacks having the same magnetic multilayer thin film structure. The magnetoresistive sensing units and the magnetoresistive reference units are respectively covered with a Pd layer, and a passivating insulation layer is deposited over the Pd layer of the magnetoresistive reference units.
    Type: Application
    Filed: November 13, 2019
    Publication date: January 13, 2022
    Inventors: James Geza Deak, Xuanzuo LIU
  • Patent number: 11169225
    Abstract: A magnetic field sensor comprises a substrate and two comb-shaped soft ferromagnetic flux concentrators with an interdigitated structure formed on the substrate. The concentrators comprise N and N?1 rectangular comb teeth and corresponding comb seats wherein N is an integer greater than 1. Gaps are formed between the comb teeth of one concentrator and the comb seat of the other concentrator in an X direction. Adjacent comb teeth in a +Y direction form 2m?1 odd space gaps and 2m even space gaps. Here, m is an integer greater than zero and less than N. Push and pull magnetoresistive sensing element strings are located respectively in the odd space gaps and the even space gaps, and are electrically interconnected into a push-pull bridge. The magnetization alignment directions of the ferromagnetic pinned layer of the magnetic sensing element strings are Y direction.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: November 9, 2021
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 11137452
    Abstract: The present invention discloses a single-chip high-sensitivity magnetoresistive linear sensor, which comprises a substrate located in the X-Y plane and a soft ferromagnetic flux concentrator array located on the substrate. The soft ferromagnetic flux concentrator array comprises several soft ferromagnetic flux concentrators, wherein there is a gap between each two adjacent soft ferromagnetic flux concentrators. The +X and ?X magnetoresistive sensing unit array respectively comprises +X and ?X magnetoresistive sensing units located in the gaps. The +X and ?X magnetoresistive sensing units are electrically interconnected to form a push pull X-axis magnetoresistive sensor. Each of the magnetoresistive sensing units that have the same magnetic field sensing direction are arranged in adjacent locations. The magnetoresistive sensing units are all MTJ magnetoresistive sensor elements, and each has the same magnetic multi-layer film structure.
    Type: Grant
    Filed: May 3, 2018
    Date of Patent: October 5, 2021
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 11067647
    Abstract: A low-noise magnetoresistive sensor includes a substrate and an array of magnetic modulation structures on the substrate. The structure includes upper and lower soft ferromagnetic layers and a conductive metal layer in the middle. The two ends of the structure are connected to form a two-port excitation coil. Adjacent structures have opposite current directions. A magnetoresistive sensing unit is located above or below and is centered in the gap between the structures. The sensitive direction of the sensing units is perpendicular to a long direction of the structures. An array of sensing units is electrically connected to form a magnetoresistive sensor, and the sensor is connected to the sensor bond pads. When measuring an external magnetic field, an excitation current is applied to the excitation coil, and the output of the voltage or current signal of the magnetoresistive sensor is demodulated to produce a low-noise voltage signal.
    Type: Grant
    Filed: April 25, 2018
    Date of Patent: July 20, 2021
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 11069544
    Abstract: A rapid thermal processing method and apparatus used for programming the pinned layer of spintronic devices, the apparatus comprising a rapid thermal annealing light source, a reflective cover, a magnet, a wafer, and a substrate. The light source is used for heating the substrate. The reflective cover at least comprises a transparent insulating layer and a reflective layer. The magnet is used to produce a constant magnetic field. An antiferromagnetic layer on a wafer may be locally programmed by controlling the exposure time, for heating a specific area on the wafer to a temperature above the blocking temperature of the antiferromagnetic layer, and then turning off the magnetic field after the heating area has cooled in the presence of the applied magnetic field. This rapid thermal processing method is used to improve the spatial resolution of laser annealing. It provides excellent performance, and it is suitable for mass production.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: July 20, 2021
    Assignee: MultiDimension Technology Co., Ltd.
    Inventor: James Geza Deak
  • Patent number: 11035716
    Abstract: A digital liquid-level sensor comprises a non-magnetic conduit, a floater provided outside the non-magnetic conduit and capable of axially moving along the non-magnetic conduit, and a permanent magnet fixed on the floater. The non-magnetic conduit further comprises a switch unit and an encoding unit. The switch unit comprises at least one tunneling magnetoresistance switch which is turned on or turned off under the effect of the magnetic field produced by the permanent magnet; and the encoding unit comprises at least one encoder, of which an input end receives an on/off signal from the tunneling magnetoresistance switch and outputs a digital signal indicating the position of the floater. The digital liquid-level sensor is of a small size; has low cost, low power consumption, high reliability, high sensitivity, high solution, long service life, and a good anti-interference capability; and can directly output the digital signal.
    Type: Grant
    Filed: January 24, 2014
    Date of Patent: June 15, 2021
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Songsheng Xue
  • Patent number: 11022468
    Abstract: A biaxial magnetoresistive angle sensor with a corresponding calibration method for magnetic field error correction, comprising two single-axis magnetoresistive angle sensors for detecting an external magnetic field in an X-axis direction and a Y-axis direction that are perpendicular to each other, a unit for calculating a vector magnitude of the voltage outputs of the single-axis magnetoresistive angle sensors along the X axis and the Y axis in real time, a unit for calculating a difference between a known calibration vector magnitude and the measured vector magnitude, a unit for dividing the difference by the square root of 2 in order to calculate an error signal, a unit for adding the error signal to the X-axis output and the Y-axis output respectively or subtracting the error signal from the X-axis output and the Y-axis output in order to calculate the calibrated output signals of the X-axis and the Y-axis angle sensors, a unit for calculating an arc tangent of a factor obtained by dividing the calibrated
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: June 1, 2021
    Assignee: MultiDimension Technology Co., Ltd.
    Inventor: James Geza Deak
  • Publication number: 20210103015
    Abstract: A resettable bipolar switch sensor is disclosed which comprises a bipolar magnetic hysteresis switch sensor, a reset coil, an ASIC switch circuit and a power reset circuit. The bipolar magnetic hysteresis switch sensor comprises a substrate and a magnetoresistive sensing arm located on the substrate. The magnetoresistive sensing arm is of a two-port structure composed of one or more magnetoresistive sensing unit strings arranged in series, parallel, or series-parallel. The magnetization direction of a free layer of a TMR magnetoresistive sensing unit is determined by an anisotropy field Hk, and together with the magnetization direction of a reference layer and the applied magnetic field, it can orient in an N or S direction. The reset coil is located between the substrate along with the magnetoresistive sensing unit, or it is located on a lead frame below the substrate. The direction of the reset magnetic field is either N or S.
    Type: Application
    Filed: January 29, 2019
    Publication date: April 8, 2021
    Inventors: James Geza Deak, Zhimin Zhou
  • Publication number: 20210103009
    Abstract: A three-axis upstream-modulated low-noise magnetoresistive sensor, comprising an X-axis magnetoresistive sensor (100), a Y-axis magnetoresistive sensor (110), and a Z-axis magnetoresistive sensor (120), wherein the X, Y, and Z-axis magnetoresistive sensors respectively comprise X, Y, and Z-axis magnetoresistive sensing unit arrays, X, Y, and Z-axis soft ferromagnetic flux concentrator arrays, and X, Y, and Z-axis modulator wire arrays. The X, Y, and Z-axis magnetoresistive sensing unit arrays are electrically interconnected into X, Y, and Z-axis magnetoresistive sensing bridges respectively. The X, Y, and Z-axis modulator wire arrays are electrically interconnected into individual two-port X, Y, and Z-axis excitation coils. In order to measure external magnetic fields, the two-port X, Y, and Z-axis excitation coils separately supplied with high-frequency alternating current at a frequency f, from a current supply.
    Type: Application
    Filed: January 29, 2019
    Publication date: April 8, 2021
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 10948554
    Abstract: A magnetoresistive sensor with encapsulated initialization coil comprises a packaging structure, at least one pair of sensor chips, a spiral initialization coil, a set of wire bonding pads, an ASIC specific integrated circuit and an encapsulation layer. The spiral initialization coil is located on a PCB substrate of the encapsulation structure. Each set of sensor chips comprises two sensor chips, wherein each of the sensor chips comprises two groups of magnetoresistive sensing unit strings. The magnetoresistive sensing unit strings located on the sensor chip are connected to form a magnetoresistive sensor bridge. The application specific integrated circuit, ASIC and the magnetoresistive sensor bridge are electrically interconnected. The sensor chips are located above the spiral initialization coil placed circumferentially along the surface of the spiral initialization coil. The wire bonding pad and the ASIC are electrically interconnected.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: March 16, 2021
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Xiaojun Zhang