Patents by Inventor James Geza Deak

James Geza Deak has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10459042
    Abstract: A magnetoresistive relay, comprising a substrate, a magnetic excitation coil, a magnetoresistive sensor, and switch integrated circuit which are placed on a substrate, which further includes an excitation signal input electrode, an excitation signal output electrode, a switch circuit positive output electrode, a switch circuit negative output electrode, a power input electrode, and a ground electrode. The ends of the magnetic excitation coil are each connected with the excitation signal input electrode and the excitation signal output electrodes. The signal from the magnetoresistive sensor is sent to the switch integrated circuit. The positive switch circuit output electrode and the switch circuit negative electrode are respectively connected with the switch integrated circuit. The power input ends and the ground ends of the switch integrated circuit and the magnetoresistive sensor are respectively connected with the power input electrode and the ground electrode.
    Type: Grant
    Filed: August 11, 2016
    Date of Patent: October 29, 2019
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: Zhimin Zhou, James Geza Deak
  • Publication number: 20190280650
    Abstract: A balanced magnetoresistive frequency mixer comprises a first spiral coil, a second spiral coil, a balanced magnetoresistive sensor bridge, and a magnetic shielding layer. The coils are located between the magnetic shielding layer and the sensor bridge. The sensor bridge comprises a magnetoresistive full bridge consisting of four bridge arms and a balancing bridge arm connected to the power supply end of the full bridge. The four bridge arms contain pairs located in a first sub region and a second sub region above or below the first spiral coil, the balancing arm is located in a third sub region above or below the second spiral coil, a first frequency signal is input into the first spiral coil, a second frequency signal is input into the second spiral coil, and a frequency-mixed signal is output from a signal output end of the full bridge.
    Type: Application
    Filed: August 17, 2017
    Publication date: September 12, 2019
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 10401440
    Abstract: A single-package high-field magnetoresistive angle sensor, comprising at least one push-pull magnetoresistive bridge and soft magnetic flux attenuators located on the push-pull magnetoresistive bridge. The push-pull magnetoresistive bridge comprises a plurality of magnetoresistive sensor units. The magnetoresistive sensor units are of an MTJ or GMR type. Each magnetoresistive sensor unit comprises at least one pinned layer, one ferromagnetic reference layer, a nonmagnetic spacer layer, and a ferromagnetic free layer. The ferromagnetic free layer is a low aspect ratio oval or circle, which can make the intensity of magnetization of the ferromagnetic free layer align along an external magnetic field in any direction.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: September 3, 2019
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 10393828
    Abstract: An interdigitated Y-axis magnetoresistive sensor, comprising a substrate, and located on the substrate is a first comb-shaped soft ferromagnetic flux guide, a second comb-shaped soft ferromagnetic flux guide, and a push-pull magnetoresistive bridge sensing unit. It also may include a calibration and/or an initialization coil. The first and the second comb-shaped soft ferromagnetic flux guides are formed into an interdigitated shape. The gaps between a second comb tooth and two adjacent the first comb teeth are the first gap and the second gap. Furthermore, a pair of gaps are formed between the second come tooth and the base of the first comb as well as between the first comb tooth and the second comb tooth base. A push magnetoresistive unit string and a pull magnetoresistive unit string are alternately placed in the first gap and the second gap, respectively. The resulting magnetoresistive sensing unit senses the magnetic field along the X-axis.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: August 27, 2019
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 10379176
    Abstract: A single-chip high-magnetic-field X-axis linear magnetoresistive sensor with a calibration and an initialization coil, comprising a high magnetic field single-chip referenced bridge X-axis magnetoresistive sensor, a calibration coil, and an initialization coil, wherein the calibration coils are planar coils, and the initialization coils are planar or three-dimensional coils. The planar calibration coils and the planar initialization coils can be placed above a substrate and below the magnetoresistive sensor units, between the magnetoresistive sensor units and the soft ferromagnetic flux guides, above the soft ferromagnetic flux guides, or at gaps between the soft ferromagnetic flux guides. The three-dimensional initialization coil is wound around the soft ferromagnetic flux guides and magnetoresistive sensor units.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: August 13, 2019
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 10371761
    Abstract: A low profile magnetoresistive imaging sensor array based on the principle of magnetic induction, which reduces a distance between a medium imaging sensor array and a medium by optimizing the arrangement of an application integrated circuit and a sensing element array and using an electric connection technology which can reduce the distance between the medium imaging sensor array and the medium, thereby increasing the resolution of the existing medium imaging sensor. The low profile magnetoresistive imaging sensor array includes a sensing element array and an application integrated circuit, and also includes a circuit which provides a power for the sensing element array, a magnetoresistive sensing element array selection circuit, a signal amplification circuit, a digitizer, a memory circuit, and a microprocessor. Additionally, the sensing element array includes at least one magnetoresistive sensing element.
    Type: Grant
    Filed: December 29, 2014
    Date of Patent: August 6, 2019
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: Mark C. Tondra, Songsheng Xue, James Geza Deak, Insik Jin, Weifeng Shen
  • Publication number: 20190227129
    Abstract: A magnetoresistive sensor wafer layout scheme used for a laser writing system and laser scanning method are disclosed. The layout scheme comprises a magnetoresistive multilayer film including an antiferromagnetic pinning layer arranged into a rectangular array of sensor dice on the wafer surface. Pinning layers of magnetoresistive sensing units are magnetically oriented and directionally aligned by the laser writing system. Sensing units are electrically connected into bridge arms electrically connected into a magnetoresistive sensor. Magnetoresistive sensing units in the dice are arranged into at least two spatially-isolated magnetoresistive orientation groups. In the magnetoresistive orientation groups, pinning layers of the sensing units have an angle of magnetic orientation of 0-360 degrees. Angles of magnetic orientation of two adjacent magnetoresistive orientation groups are different.
    Type: Application
    Filed: September 13, 2017
    Publication date: July 25, 2019
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 10330748
    Abstract: A push-pull X-axis magnetoresistive sensor, comprising: a substrate upon which an interlocked array of soft ferromagnetic flux concentrators and a push-pull magnetoresistive sensor bridge unit are placed. It further may comprise calibration coils and/or initialization coils. At least one of each of the soft ferromagnetic flux concentrators is present such that an interlocking structure may be formed such that there are alternately interlocked and non-interlocked gaps along the X direction. Push/pull magnetoresistive sensing unit strings are respectively located in the interlocked and non-interlocked gaps and are electrically connected to form a push-pull magnetoresistive bridge sensing unit. This magnetoresistive sensing unit is sensitive to magnetic field along the X direction.
    Type: Grant
    Filed: June 1, 2016
    Date of Patent: June 25, 2019
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 10277992
    Abstract: This invention discloses a TMR near-field magnetic communication system, which is used for detecting AC and DC magnetic fields generated by a near-field magnetic communication system, and inputting AC and DC magnetic field signal to an audio electroacoustic taking the same as input signals thereof. The audio electroacoustic device comprises a hearing aid, an earphone of a home entertainment system, a public hearing loop system with an embedded hearing device, etc. The TMR near-field magnetic communication system comprises one or more TMR sensor bridges for detecting AC and DC magnetic field signals, an analog-signal circuit containing a filter which is used for separating components of AC and DC signals output by a TMR sensor, an amplifier which is used for amplifying an AC electrical signal, and an analog output used for transmitting the AC electrical signal to the audio electroacoustic device.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: April 30, 2019
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Haiping Guo, Songsheng Xue
  • Publication number: 20190120915
    Abstract: A magnetoresistive sensor with encapsulated initialization coil comprises a packaging structure, at least one pair of sensor chips, a spiral initialization coil, a set of wire bonding pads, an ASIC specific integrated circuit and an encapsulation layer. The spiral initialization coil is located on a PCB substrate of the encapsulation structure. Each set of sensor chips comprises two sensor chips, wherein each of the sensor chips comprises two groups of magnetoresistive sensing unit strings. The magnetoresistive sensing unit strings located on the sensor chip are connected to form a magnetoresistive sensor bridge. The application specific integrated circuit, ASIC and the magnetoresistive sensor bridge are electrically interconnected. The sensor chips are located above the spiral initialization coil placed circumferentially along the surface of the spiral initialization coil. The wire bonding pad and the ASIC are electrically interconnected.
    Type: Application
    Filed: April 10, 2017
    Publication date: April 25, 2019
    Inventors: James Geza Deak, Xiaojun Zhang
  • Patent number: 10238793
    Abstract: A precision syringe pump employing a syringe comprises a motor, a lead screw and a syringe driving head connected to the lead screw. The syringe comprises a cylinder and a plunger. The motor drives the lead screw to rotate clockwise or counterclockwise to drive the syringe driving head and push the plunger to move within the cylinder. The syringe pump further comprises: a magnetoresistive sensor, at least one permanent magnet and an MCU, the at least one permanent magnet being located on the lead screw and rotating therewith; the magnetoresistive sensor can sense the magnetic field generated by the at least one permanent magnet; the input end of the MCU is connected to the magnetoresistive sensor, and the output end of the MCU is connected to the motor; the MCU receives signals from the magnetoresistive sensor and controls, according to the signal feedback, the direction and velocity of the lead screw rotated by the motor.
    Type: Grant
    Filed: February 12, 2015
    Date of Patent: March 26, 2019
    Assignee: MULTIDIMENSION TECHNOLOGY CO., LTD
    Inventors: James Geza Deak, Yuqin Jin
  • Patent number: 10240961
    Abstract: An electronic water meter capable of implementing precision metering. The electronic water meter comprises a machine frame, multiple counter units, and multiple shielding plates. The counter units comprise numerical character wheels, magnets, magnetic angular displacement sensors, and digital circuits. The magnetic angular displacement sensors are electrically connected to the digital circuits, sense components of magnetic fields at respective positions thereof on the basis of angular position changes of magnetic field vectors of the counter units, and transmit a corresponding electric signal to the digital circuits. The digital circuits perform a calculation processing on the basis of the electrical signal outputted by the magnetic angular displacement sensors and output a digital signal corresponding to the angular positions of the numerical character wheels.
    Type: Grant
    Filed: April 18, 2014
    Date of Patent: March 26, 2019
    Assignee: MULTIDIMENSION TECHNOLOGY CO. LTD
    Inventors: Xiaofeng Cheng, James Geza Deak
  • Patent number: 10232109
    Abstract: A mini lead screw pump monitors the rotation of a lead screw by using a magnetoresistive sensor and an MCU, and uses feedback to control the rotation direction and speed of the lead screw through a motor controller so as to control the speed of infusion to a patient. Furthermore, this mini lead screw pump can control the infusion speed of insulin according to the patient's blood sugar concentration monitored by CGM. This mini lead screw pump has several advantages, comprising high sensitivity, high reliability, low power consumption, low cost, and ease of use.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: March 19, 2019
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Yuqin Jin
  • Patent number: 10228426
    Abstract: A single chip Z-axis linear magnetoresistive sensor with a calibration/initialization coil comprises a single chip Z-axis linear magnetoresistive sensor, and a calibration coil and/or an initialization coil. The calibration coil and the initialization coil are planar coils or three-dimensional coils. The planar coils are located above a substrate and below a magnetoresistive sensing unit, between a magnetoresistive sensing unit and a soft ferromagnetic flux concentrator, above a soft ferromagnetic flux concentrator, or in a gap of the soft ferromagnetic flux concentrator. The three-dimensional coil is wound around the soft ferromagnetic flux concentrator and the magnetoresistive sensing unit.
    Type: Grant
    Filed: January 5, 2016
    Date of Patent: March 12, 2019
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 10197419
    Abstract: Provided is a magnetic absolute rotary encoder, comprising a rotation shaft, multiple rotating wheels that can rotate along the rotation shaft, multiple encoding units that correspond to the multiple rotating wheels one-to-one, and one or more permanent magnet assemblies that provide the magnetic bias to the multiple encoding units. Each encoding unit comprises a magnetically permeable encoder disc, the structure thereof enabling the magnetic permeability thereof to be different according to the different positions of the rotation shaft, and comprises multiple sensor units that comprise multiple magnetic sensors. The sensor units are used to sense the magnetic permeability of the magnetically permeable encoder disc and to output the sensor signals that characterize the relative position of the magnetically permeable encoder disc.
    Type: Grant
    Filed: January 29, 2014
    Date of Patent: February 5, 2019
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Jilie Wei, Jingfeng Liu
  • Patent number: 10187731
    Abstract: A magnetoresistive audio pickup comprises an audio detection circuit. The audio detection circuit comprises at least one linear magnetoresistive sensor, a coupling capacitance, an AC amplifier, and a signal processing circuit comprising an additional amplifier. The linear magnetoresistive sensor comprises at least one single-axis linear magnetoresistive sensor unit. The linear magnetoresistive sensors are placed in a measurement plane above a speaker's voice coil, the signal output end of each single-axis linear magnetoresistive sensor unit is capacitively coupled to the AC amplifier which provides AC signals through electrical connection to the amplifier, these signals are combined within the signal processing unit into an audio signal, and the audio signal is output from the circuit; each single-axis linear sensor unit is located in the linear response area of the measurement plane.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: January 22, 2019
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: Zhimin Zhou, James Geza Deak, Haiping Guo
  • Patent number: 10168396
    Abstract: Disclosed is a low fly height in-plane magnetic image sensor chip. This sensor chip comprises a silicon (Si) substrate with a pit on the surface, a magnetoresistive sensor, and an insulating layer. The magnetoresistive sensor is located on the bottom surface of the pit in the Si substrate. The insulating layer is located above the magnetoresistive sensor. The magnetic image surface detected during operation is coplanar or parallel with the surface of the Si substrate surface. The input and output ends of the magnetoresistive sensor are connected with leads directly, or bonded with leads through pads, or through a conducting post and pads to form connections. And the flying height of the leads is lower than the height of the surface of the Si substrate. This technical solution has several advantages, such as compact structure, high output signal, and direct contact with the magnetic image.
    Type: Grant
    Filed: April 14, 2015
    Date of Patent: January 1, 2019
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 10126378
    Abstract: A single-chip Z-axis linear magnetoresistive sensor is provided. The sensor comprises a substrate, magnetoresistive sensing elements, and flux guides, wherein the magnetoresistive sensing elements are mutually electrically connected to form push arms and pull arms of a bridge; the push arms and the pull arms are alternately arranged, and the magnetoresistive sensing elements on the push arms and the pull arms are respectively located at two sides beneath the flux guides; the magnetization direction of a pinning layer of each magnetoresistive sensing element is the same and is in an X-axis direction. An external magnetic field in a Z-axis direction is converted into a magnetic field with components in an X-axis direction by the flux guides, and thus the magnetoresistive sensing elements beneath the flux guides can detect this component.
    Type: Grant
    Filed: September 10, 2014
    Date of Patent: November 13, 2018
    Assignee: MULTIDIMENSION TECHNOLOGY CO., LTD
    Inventor: James Geza Deak
  • Publication number: 20180321334
    Abstract: A magnetic field sensor comprises a substrate and two comb-shaped soft ferromagnetic flux concentrators with an interdigitated structure formed on the substrate. The concentrators comprise N and N?1 rectangular comb teeth and corresponding comb seats wherein N is an integer greater than 1. Gaps are formed between the comb teeth of one concentrator and the comb seat of the other concentrator in an X direction. Adjacent comb teeth in a +Y direction form 2m?1 odd space gaps and 2m even space gaps. Here, m is an integer greater than zero and less than N. Push and pull magnetoresistive sensing element strings are located respectively in the odd space gaps and the even space gaps, and are electrically interconnected into a push-pull bridge. The magnetization alignment directions of the ferromagnetic pinned layer of the magnetic sensing element strings are Y direction.
    Type: Application
    Filed: October 31, 2016
    Publication date: November 8, 2018
    Inventors: James Geza Deak, Zhimin Zhou
  • Patent number: 10107871
    Abstract: A monolithic three-axis magnetic field sensor comprises an X-axis sensor, a Y-axis sensor and a Z-axis sensor integrated into the same substrate. The X-axis sensor and the Y-axis are both referenced bridge structures. The magnetoresistive sensing elements of the reference arm are beneath the corresponding magnetic flux guides, and the magnetoresistive sensing elements are in the gaps between the corresponding magnetic flux guides. The magnetoresistive elements of these two sensors are aligned perpendicular to each other, and the magnetization directions of the pinned layer of these magnetoresistive elements are perpendicular to each other as well. The Z-axis sensor is a push-pull bridge structure. The push arms and pull arms of the magnetoresistive sensors are respectively aligned above or beneath the edges of the magnetic flux guides. The manufacturing method for this monolithic three-axis magnetic field sensor is also disclosed.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: October 23, 2018
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Dan Li