Patents by Inventor James J. Troy

James J. Troy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9234904
    Abstract: An apparatus comprises an inspection vehicle, a sensor system, a positioning system, a controller, and a support system. The inspection vehicle is configured to move on a surface of an object. The sensor system is associated with the inspection vehicle and is configured to generate information about the object when the inspection vehicle is on the surface of the object. The positioning system is configured to determine a location of the inspection vehicle on the object. The controller is configured to control movement of the inspection vehicle using the positioning system and control operation of the sensor system. The support system is connected to the inspection vehicle and is configured to support the inspection vehicle in response to an undesired release of the inspection vehicle from the surface of the object.
    Type: Grant
    Filed: January 8, 2014
    Date of Patent: January 12, 2016
    Assignee: THE BOEING COMPANY
    Inventors: James J. Troy, Gary Ernest Georgeson, Karl Edward Nelson, Scott Wesley Lea
  • Patent number: 9221506
    Abstract: A system in accordance with one embodiment comprises a marking device attached to a holonomic-motion crawler vehicle capable of movement on non-horizontal surfaces. Modular attachment and motion control interfaces on the platform allow attachment of various types of marking and non-destructive inspection (NDI) sensor modules. The crawling vehicle marks the location of sub-surface features on an aircraft skin or overlaid patch (doubler) using a pen or sticker or tape applicator that is guided based on either a 3-D CAD model or NDI data collected as the vehicle crawls. A second embodiment utilizes an automated NDI scanner to collect 2-D image data of the substructure to enable manual or automated feature/edge selection for marking. Location tracking of the marking device can be implemented using a local positioning system or a motion capture system.
    Type: Grant
    Filed: July 23, 2013
    Date of Patent: December 29, 2015
    Assignee: The Boeing Company
    Inventors: Gary E. Georgeson, John R. Linn, James J. Troy, Karl Edward Nelson, Daniel J. Wright, Scott W. Lea
  • Publication number: 20150371443
    Abstract: A method, system, and apparatus for visually presenting a virtual environment relative to a physical workspace. An output device visually presents a view of the virtual environment to guide a human operator in performing a number of operations within the physical workspace. A mounting structure holds the output device and is movable with at least one degree of freedom relative to the physical workspace. A sensor system measures movement of the output device relative to the physical workspace to generate sensor data. A controller computes a transformation matrix and the set of scale factors to align the virtual environment and the physical workspace. The controller changes the view of virtual environment based on the sensor data to thereby change the view of the virtual environment in correspondence with the movement of the output device relative to the physical workspace.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 24, 2015
    Inventors: James J. Troy, Scott W. Lea, Daniel J. Wright
  • Patent number: 9197810
    Abstract: An automated process uses a local positioning system to acquire location (i.e., position and orientation) data for one or more movable target objects. In cases where the target objects have the capability to move under computer control, this automated process can use the measured location data to control the position and orientation of such target objects. The system leverages the measurement and image capture capability of the local positioning system, and integrates controllable marker lights, image processing, and coordinate transformation computation to provide tracking information for vehicle location control. The resulting system enables position and orientation tracking of objects in a reference coordinate system.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: November 24, 2015
    Assignee: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Daniel James Wright, Gary E. Georgeson, Karl Edward Nelson
  • Patent number: 9195235
    Abstract: A method and apparatus comprising an energy source, a position system, and a movement system. The energy source is configured to generate a beam of energy directed at an area on a target for a vehicle. The position system is configured to identify a first position of the area on the target at which the beam of energy is directed. The movement system is configured to move the vehicle in a manner that reduces a difference between the first position of the area on the target at which the beam of energy is directed and a reference position on the target.
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: November 24, 2015
    Assignee: THE BOEING COMPANY
    Inventors: James J. Troy, Scott Wesley Lea, Gary Ernest Georgeson, Karl Edward Nelson
  • Patent number: 9193573
    Abstract: A process for measuring and controlling the position and velocity of one moving part of a scissor lift device through the measurement of another moving part of the scissor lift device. The position and velocity of the moving part (e.g., a platform of the scissor lift device) are computed using kinematics and Jacobian functions that define the position and velocity in terms of the measured degree of freedom. The process provides continuous, closed-form computation of the position and velocity of a platform carried by a scissor linkage mechanism during the latter's extension, which enables applications for motion sensing and control of linkage extension types of systems.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: November 24, 2015
    Assignee: The Boeing Company
    Inventor: James J. Troy
  • Publication number: 20150329221
    Abstract: Systems and methods for high-speed non-destructive inspection of a half- or full-barrel-shaped workpiece, such as a barrel-shaped section of an aircraft fuselage. Such workpieces can be scanned externally using a mobile (e.g., translating) arch gantry system comprising a translatable arch frame disposed outside the fuselage section, a carriage that can travel along a curved track carried by the arch frame, a radially inward-extending telescopic arm having a proximal end fixedly coupled to the carriage, and an NDI sensor unit coupled to a distal end of the telescoping arm. The stiffeners of the fuselage sections can be scanned using a mobile scanner platform disposed inside the fuselage section, which platform comprises a radially outward-extending telescopic arm rotatably coupled to a mobile (e.g., holonomic or linear motion) platform and an NDI sensor unit coupled to a distal end of the telescoping arm.
    Type: Application
    Filed: May 16, 2014
    Publication date: November 19, 2015
    Applicant: THE BOEING COMPANY
    Inventors: Gary E. Georgeson, Barry A. Fetzer, James J. Troy, Scott W. Lea
  • Patent number: 9182487
    Abstract: A system for inspecting a test article incorporates a diagnostic imaging system for a test article. A command controller receives two dimensional (2D) images from the diagnostic imaging system. A three dimensional (3D) computer aided design (CAD) model visualization system and an alignment system for determining local 3D coordinates are connected to the command controller. Computer software modules incorporated in the command controller are employed, in aligning, the 2D images and 3D CAD model responsive to the local 3D coordinates. The 2D images and 3D CAD model are displayed with reciprocal registration. The alignment system is then directed to selected coordinates in the 2D images or 3D CAD model.
    Type: Grant
    Filed: June 22, 2011
    Date of Patent: November 10, 2015
    Assignee: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Gary E. Georgeson, William P. Motzer, Peter J. Hellenbrand, Kevin Puterbaugh
  • Patent number: 9176099
    Abstract: Method and apparatus for enabling ultrasonic inspection of a changing, insufficiently defined or unknown shape (e.g., a variable radius or a noncircular radius caused by the use of soft tooling) at a rate that meets production requirements. The apparatus comprises a linear ultrasonic array (i.e., sensor) incorporated in a toppler, which in turn is slidably supported by an oscillating sensor mechanism carried by a traveling trailer vehicle. As a result of this arrangement, the sensor can undergo a back-and-forth sweeping motion coupled with motion along the spar radius. The sensor is further able to displace radially relative to a sweep pivot axis and rotate (hereinafter “topple”) about a topple pivot axis. In this manner, the orientation of the sensor can adjust to the contour of the inspected surface as the sensor scans.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: November 3, 2015
    Assignee: The Boeing Company
    Inventors: William P. Motzer, James C. Kennedy, Steven Ray Walton, James J. Troy
  • Patent number: 9156321
    Abstract: A system is disclosed comprising a tractor vehicle, at least one trailer vehicle and a skin between and in contact with the tractor and trailer vehicles. One of the tractor and trailer vehicles is disposed in a non-inverted position above the skin and the other is disposed in an inverted position below the skin. The trailer vehicle comprises one or more magnets, while the tractor vehicle comprises one or more magnets magnetically coupled to each opposing magnet on the trailer vehicle. For example, the tractor and trailer vehicles may have mutually opposing permanent magnets in one-to-one relationship. Alternatively, each permanent magnet on the trailer vehicle could be opposed by one or more electro-permanent magnets on the tractor vehicle. The magnetic coupling between the magnets on the tractor and trailer vehicles produces an attraction force.
    Type: Grant
    Filed: January 28, 2014
    Date of Patent: October 13, 2015
    Assignee: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Daniel James Wright
  • Patent number: 9149929
    Abstract: Methods and systems are provided for positioning a remote sensor within a target object. An articulated robotic system is coupled to the remote sensor. A positioning system determines a position of the target object to be inspected and determines a first position of the remote sensor. A control system calibrates a virtual representation of the target object with respect to the position of the target object, and tracks movement of the remote sensor relative to the target object.
    Type: Grant
    Filed: May 26, 2010
    Date of Patent: October 6, 2015
    Assignee: THE BOEING COMPANY
    Inventors: William P. Motzer, Gary E. Georgeson, Scott W. Lea, Peter J. Hellenbrand, James J. Troy
  • Publication number: 20150268033
    Abstract: Systems and methods for performing relative object localization using a local positioning system. The process in accordance with one embodiment solves the problem of determining the location (i.e., the position and orientation) of an object relative to a previous location of the object, or relative to another object, without the need for known 3-D data point positions in the environment. The process in accordance with another embodiment solves the problem of determining the location of the measurement instrument relative to a previous location of the measurement instrument using visible feature points on a target object as a reference, again without the need for known 3-D data point positions. The process in accordance with a further embodiment is capable of determining the locations of multiple objects relative to each other.
    Type: Application
    Filed: March 21, 2014
    Publication date: September 24, 2015
    Applicant: THE BOEING COMPANY
    Inventors: James J. Troy, Scott W. Lea, Gary E. Georgeson
  • Publication number: 20150226369
    Abstract: A system comprising a multi-functional boom subsystem integrated with a holonomic-motion boom base platform. The boom base platform may comprise: Mecanum wheels with independently controlled motors; a pair of sub-platforms coupled by a roll-axis pivot to maintain four-wheel contact with the ground surface; and twist reduction mechanisms to minimize any yaw-axis twisting torque exerted on the roll-axis pivot. A computer with motion control software may be embedded on the boom base platform. The motion control function can be integrated with a real-time tracking system. The motion control computer may have multiple platform motion control modes: (1) a path following mode in which the boom base platform matches the motion path of the surface crawler (i.e.
    Type: Application
    Filed: February 10, 2014
    Publication date: August 13, 2015
    Applicant: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Gary E. Georgeson, Karl Edward Nelson, Daniel James Wright
  • Publication number: 20150207987
    Abstract: An automated process uses a local positioning system to acquire location (i.e., position and orientation) data for one or more movable target objects. In cases where the target objects have the capability to move under computer control, this automated process can use the measured location data to control the position and orientation of such target objects. The system leverages the measurement and image capture capability of the local positioning system, and integrates controllable marker lights, image processing, and coordinate transformation computation to provide tracking information for vehicle location control. The resulting system enables position and orientation tracking of objects in a reference coordinate system.
    Type: Application
    Filed: March 30, 2015
    Publication date: July 23, 2015
    Applicant: THE BOEING COMPANY
    Inventors: James J. Troy, Scott W. Lea, Daniel James Wright, Gary E. Georgeson, Karl Edward Nelson
  • Patent number: 9058681
    Abstract: In one embodiment, a computer-based system comprises a measurement device, a display, a processor, and logic instructions stored in a tangible computer-readable medium coupled to the processor which, when executed by the processor, configure the processor to determine a position and orientation in a real three dimensional space of the measurement device relative to at least one real object in the three dimensional space and render on the display, a perspective view of a virtual image of a virtual object corresponding to the real object in a virtual three-dimensional space, wherein the perspective view of the virtual object corresponds to the perspective view of the real object from the position of the measurement device.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: June 16, 2015
    Assignee: The Boeing Company
    Inventors: James J. Troy, Kevin Puterbaugh, Christopher Esposito, John C. Gass
  • Patent number: 9043146
    Abstract: An automated process uses a local positioning system to acquire location (i.e., position and orientation) data for one or more movable target objects. In cases where the target objects have the capability to move under computer control, this automated process can use the measured location data to control the position and orientation of such target objects. The system leverages the measurement and image capture capability of the local positioning system, and integrates controllable marker lights, image processing, and coordinate transformation computation to provide tracking information for vehicle location control. The resulting system enables position and orientation tracking of objects in a reference coordinate system.
    Type: Grant
    Filed: June 19, 2013
    Date of Patent: May 26, 2015
    Assignee: The Boeing Company
    Inventors: James J. Troy, Scott W. Lea, Daniel James Wright, Gary E. Georgeson, Karl Edward Nelson
  • Publication number: 20150116481
    Abstract: Systems and methods for mapping a damaged region on an object. An exemplary system captures an image of the damaged region with a camera, selects target points around a boundary of the damaged region on the image, and determines 2D image coordinates for the target points on the image. The system further determines angles for aiming a laser ranging device at each of the target points based on the image coordinates, and measures a distance to each of the target points with the laser ranging device based on the aiming angles. The system then calculates 3D coordinates for each of the target points in the coordinate system of the object based on the distance measurement and the 2D image coordinates for each of the target points.
    Type: Application
    Filed: October 29, 2013
    Publication date: April 30, 2015
    Applicant: THE BOEING COMPANY
    Inventors: James J. Troy, Scott W. Lea, Susan H. Young
  • Patent number: 9010684
    Abstract: A system and method that allow inspection of hollow structures made of composite material, such as an integrally stiffened wing box of an aircraft. A wing box comprises top and bottom skins connected by a plurality of spaced spars. The system employs a plurality of scanners for inspecting different portions of each spar. The system uses dynamically controlled magnetic coupling to connect an external drive tractor to computer-controlled scanners that carry respective sensors, e.g., linear ultrasonic transducer arrays. A system operator can control the various components by means of a graphical user interface comprising multiple interaction regions that represent the individual scanner motion paths and are associated with respective motion script files.
    Type: Grant
    Filed: June 27, 2012
    Date of Patent: April 21, 2015
    Assignee: The Boeing Company
    Inventors: William P. Motzer, James C. Kennedy, Michael C. Hutchinson, Martin L. Freet, Ronald E. VonWahlde, Steven Ray Walton, Jeffry J. Garvey, Scott W. Lea, James J. Troy, Daniel James Wright, Hien T. Bui, Michael Joseph Duncan, Mark L. Little, William Joseph Tapia, Barry A. Fetzer, Richard C. Krotzer
  • Patent number: 8983794
    Abstract: A non-destructive inspection system for a structure is described. The inspection system includes a local positioning system (LPS) configured for determining position and orientation of objects relative to a structure coordinate system, a six degree-of-freedom digitizer operable for at least one of temporary attachment to the structure and placement proximate the structure, a non-destructive sensor array, and a processing device.
    Type: Grant
    Filed: October 4, 2010
    Date of Patent: March 17, 2015
    Assignee: The Boeing Company
    Inventors: William P. Motzer, Gary E. Georgeson, Scott W. Lea, James J. Troy
  • Patent number: 8943892
    Abstract: A computer-controlled robotic platform with a collapsible lifting arm that positions a non-destructive inspection (NDI) sensor for scanning inside tunnel regions of a composite structure such as an integrally stiffened wing box. The lifting arm of a modified scissor lift mechanism can be collapsed to a very low height to pass through narrow sections of the integrally stiffened wing box, and also extended by more than a factor of three to reach the maximum height of the wing box tunnels. The system performs a vertical position sensing and control process that uses inverse kinematics to enable position control using data from a standard rotational encoder on the motor to determine vertical position. The system produces simulated encoder pulses that represent unit vertical displacements of a distal portion of a modified scissor lift mechanism using a forward kinematics equation in which the rotation angle of a lead screw is an input variable.
    Type: Grant
    Filed: May 11, 2012
    Date of Patent: February 3, 2015
    Assignee: The Boeing Company
    Inventors: Jeffry J. Garvey, James C. Kennedy, James J. Troy