Patents by Inventor James Lacey

James Lacey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130279648
    Abstract: A liquid cooled thermal control system for a computed tomography (CT) detector includes a plurality of temperature sensors and a control mode selector module coupled to the plurality of temperature sensors. The control mode selector module is programmed to receive an input from the plurality of temperature sensors, identify the inputs as either valid inputs or invalid inputs, and determine an operational mode of the liquid cooled thermal control system based on the identified inputs. A CT imaging system and a method of operating a cooling system are also described.
    Type: Application
    Filed: April 24, 2012
    Publication date: October 24, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ashutosh Joshi, Joseph James Lacey, Medy Satria
  • Patent number: 8548119
    Abstract: A CT system is disclosed that includes detector modules positioned on a rotatable gantry configured to receive x-rays attenuated by an object. Each detector module includes a module frame, a plurality of tileable sub-modules on the module frame aligned along a Z-axis thereof to receive the x-rays attenuated by the object and convert the x-rays to digital signals, and an electronics board connected to the plurality of sub-modules to receive the digital signals. Each sub-module further includes an array of detector elements to receive x-rays attenuated through the object and convert the x-rays into analog electrical signals, an ASIC electronics package coupled to the array of detector elements to receive the analog electrical signals and convert the analog electrical signals to digital signals, and a flex circuit connected to the ASIC electronics package to receive the digital signals and transfer the digital signals to the electronics board.
    Type: Grant
    Filed: January 13, 2011
    Date of Patent: October 1, 2013
    Assignee: General Electric Company
    Inventors: Abdelaziz Ikhlef, Brian Joseph Graves, Gregory S. Zeman, Joseph James Lacey, Mayank Gupta, Baiju Zacharia Babu, Ross Hoggatt
  • Publication number: 20130223588
    Abstract: A radiation imaging apparatus is provided. The radiation imaging apparatus includes a radiation source configured to emit radiation from a first focal point, a plurality of radiation detecting elements disposed opposite to the radiation source and arranged in a channel direction, a plurality of collimator plates provided along the channel direction so as to separate the radiation detecting elements, the collimator plates including radiation absorption members at surfaces of at least one first collimator plate located on a first end side and at least one second collimator plate located on a second end side such that radiation shielding effects of the first and second collimator plates become substantially equivalent when the surfaces of the first and second collimator plates are located along a radial direction from a second focal point, and a data acquisition unit configured to acquire radiation projection data from the radiation detecting elements.
    Type: Application
    Filed: February 24, 2012
    Publication date: August 29, 2013
    Inventors: Haruo KUROCHI, Abdelaziz IKHLEF, Joseph James LACEY, Mark ADAMAK
  • Publication number: 20130129104
    Abstract: A CT system is provided that includes an outer housing, a rotatable gantry positioned within the outer housing and having a gantry opening to receive an object to be scanned, an x-ray source mounted on the rotatable gantry and configured to project an x-ray beam toward the object, and a detector array mounted on the rotatable gantry and configured to detect x-ray energy passing through the object and generate a detector output responsive thereto that can be reconstructed into an image of the object. A hybrid noise mitigation system is included in the CT system that is configured to mitigate noise generated by the CT system during operation, the hybrid noise mitigation system comprising a passive noise mitigation device configured to control noise in a passive manner and an active noise mitigation device configured to control noise in an active manner.
    Type: Application
    Filed: November 17, 2011
    Publication date: May 23, 2013
    Inventors: Ashutosh Joshi, Joseph James Lacey
  • Patent number: 8385499
    Abstract: A two dimensional collimator assembly and method of manufacturing thereof is disclosed. The collimator assembly includes a wall structure constructed to form a two dimensional array of channels to collimate x-rays. The wall structure further includes a first portion positioned proximate the object to be scanned and configured to absorb scattered x-rays and a second portion formed integrally with the first portion and extending out from the first portion away from the object to be scanned. The first portion of the wall structure has a height greater than a height of the second portion of the wall structure. The second portion of the wall structure includes a reflective material coated thereon in each of the channels forming the two dimensional array of channels.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: February 26, 2013
    Assignee: General Electric Company
    Inventors: Zhaoping Wu, Haochuan Jiang, Joseph James Lacey, James S. Vartuli, Yunfeng Sun, Qun Deng, Xiaoye Wu, Kun Tao, Zhaohui Yang
  • Publication number: 20130039533
    Abstract: A method is provided for image detection. The method includes measuring a temperature of an analog-to-digital (A/D) converter of an imaging system during an imaging scan of an object, and correcting a gain of the A/D converter based on the measured temperature of the A/D converter.
    Type: Application
    Filed: August 12, 2011
    Publication date: February 14, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Joseph James Lacey, Russell Hum, Ashutosh Joshi
  • Patent number: 8283636
    Abstract: A high resolution material observation system includes an object having at least one spatial dimension sufficient to support production of near-field infrared emissions, a holder adapted to receive a sample to be observed, the holder further adapted to position the sample in the near-field infrared emissions, and a thermal excitation unit, adapted to be thermally coupled to at least one of the object and the sample. The thermal excitation unit is further adapted to causing black body radiation in either the object or the sample within the infrared spectrum.
    Type: Grant
    Filed: April 10, 2012
    Date of Patent: October 9, 2012
    Assignee: International Business Machines Corporation
    Inventors: Hendrik F. Hamann, Snorri Ingvarsson, James A. Lacey
  • Publication number: 20120201004
    Abstract: A method and apparatus for real-time thermal characterization of a fully operating cooling device (1002). A heat source (1004) is applied to one or more areas on a cooling device (1002) to produce non-uniform heating of the cooling device. Infrared (IR) temperature imaging (1006) detects and measures the thermal distribution of the heat source (1004) on the cooling device (1002) to develop a thermal characterization of the cooling device (1002).
    Type: Application
    Filed: April 12, 2012
    Publication date: August 9, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hendrik F. HAMANN, Madhusudan K. IYENGAR, James A. LACEY, Roger R. SCHMIDT
  • Publication number: 20120193536
    Abstract: A high resolution material observation system includes an object having at least one spatial dimension sufficient to support production of near-field infrared emissions, a holder adapted to receive a sample to be observed, the holder further adapted to position the sample in the near-field infrared emissions, and a thermal excitation unit, adapted to be thermally coupled to at least one of the object and the sample. The thermal excitation unit is further adapted to causing black body radiation in either the object or the sample within the infrared spectrum.
    Type: Application
    Filed: April 10, 2012
    Publication date: August 2, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Hendrik F. HAMANN, Snorri INGVARSSON, James A. LACEY
  • Publication number: 20120183119
    Abstract: A CT system is disclosed that includes detector modules positioned on a rotatable gantry configured to receive x-rays attenuated by an object. Each detector module includes a module frame, a plurality of tileable sub-modules on the module frame aligned along a Z-axis thereof to receive the x-rays attenuated by the object and convert the x-rays to digital signals, and an electronics board connected to the plurality of sub-modules to receive the digital signals. Each sub-module further includes an array of detector elements to receive x-rays attenuated through the object and convert the x-rays into analog electrical signals, an ASIC electronics package coupled to the array of detector elements to receive the analog electrical signals and convert the analog electrical signals to digital signals, and a flex circuit connected to the ASIC electronics package to receive the digital signals and transfer the digital signals to the electronics board.
    Type: Application
    Filed: January 13, 2011
    Publication date: July 19, 2012
    Inventors: Abdelaziz Ikhlef, Brian Joseph Graves, Gregory S. Zeman, Joseph James Lacey, Mayank Gupta, Baiju Zacharia Babu, Ross Hoggatt
  • Publication number: 20120177174
    Abstract: A system and method for temperature drift correction capability in a CT detector module is disclosed. A scintillator array of a CT detector module has a plurality of scintillator cells configured to detect high frequency electromagnetic energy passing through an object, with a plurality of photodiodes in a photodiode array optically coupled to the scintillator array to detect light output therefrom. A computer is provided that is programmed to measure a response of the plurality of photodiodes as a function of temperature, determine a transfer function indicative of the response of the plurality of photodiodes as a function of temperature, normalize the transfer function to a virtual operating temperature, measure a temperature of the photodiode array prior to a scan, determine a correction factor from the normalized transfer function based on the measured photodiode temperature and the virtual operating temperature, and apply the correction factor to the photodiode outputs.
    Type: Application
    Filed: January 11, 2011
    Publication date: July 12, 2012
    Inventors: Abdelaziz Ikhlef, Joseph James Lacey
  • Patent number: 8210741
    Abstract: An apparatus determines cooling characteristics of an operational cooling device used for transferring heat from an electronic device. The operational cooling device is thermally coupled to a heat pipe. The heat pipe has an exposed surface for selective application of heat thereon. Heat from a localized heat source is selectively applied to at least one region of the exposed surface. The heat source is preferably capable of being varied both positionally relative to the exposed surface and in heat intensity. A heat shield is preferably positioned around the exposed surface of the heat pipe to isolate the operational cooling device from the heat from the localized heat source. A temperature detector repeatedly measures a temperature distribution across the exposed surface while the cooling device is in a heat transfer mode. The temperature distribution is then used to thermally characterize the operational cooling device.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: July 3, 2012
    Assignee: International Business Machines Corporation
    Inventors: Hendrik F. Hamann, Madhusudan K. Iyengar, James A. Lacey, Roger R. Schmidt
  • Patent number: 8173965
    Abstract: A high resolution material observation system includes an object having at least one spatial dimension sufficient to support production of near-field infrared emissions, a holder adapted to receive a sample to be observed, the holder further adapted to position the sample in the near-field infrared emissions, and a thermal excitation unit, adapted to be thermally coupled to at least one of the object and the sample. The thermal excitation unit is further adapted to causing black body radiation in either the object or the sample within the infrared spectrum.
    Type: Grant
    Filed: September 12, 2006
    Date of Patent: May 8, 2012
    Assignee: International Business Machines Corporation
    Inventors: Hendrik F. Hamann, Snorri Ingvarsson, James A. Lacey
  • Patent number: 8038343
    Abstract: A novel computer program product and method for thermally characterizing a device used for cooling an electronic device is disclosed. A cooling device, being operated, is thermally coupled to a heat pipe having a surface to receive a test chip. A heater is patterned on a circuitry side of the test chip. The heater is separate from operational circuitry of the test chip. A localized heat source is applied to at least one region on a test chip thermally coupled to the heat pipe to locally heat more than one region on a second surface of the test chip to test more than one hot spot. The second surface is the circuitry side of the test chip. The heater provides a bias heat to the test chip, independent of operating the test chip, while the localized heat source is selectively applied directly to the test chip. A temperature detector is used to measure a temperature distribution on the second surface of the test chip.
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: October 18, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hendrik F. Hamann, Madhusudan K. Iyengar, James A. Lacey, Roger R. Schmidt
  • Patent number: 8029186
    Abstract: What is disclosed is an apparatus for determining the cooling characteristics of a cooling device used for transferring heat from an electronic device. The apparatus comprising a cooling device thermally coupled to a heat pipe. The heat pipe having an exposed surface for the selective application of heat thereon. A localized heat source is selectively applied to at least one region of the exposed surface. The heat source preferably capable of being varied both positionally relative to the exposed surface and in heat intensity. A heat shield is preferably positioned around the exposed surface of the heat pipe to isolate the operational cooling device from the localized heat source. A temperature detector repeatedly measures a temperature distribution across the exposed surface while the cooling device is in a heat transfer mode. The temperature distribution is then used to thermally characterize the cooling device.
    Type: Grant
    Filed: November 5, 2004
    Date of Patent: October 4, 2011
    Assignee: International Business Machines Corporation
    Inventors: Hendrik F. Hamann, Madhusudan K. Iyengar, James A. Lacey, Roger R. Schmidt
  • Publication number: 20110158381
    Abstract: A two dimensional collimator assembly and method of manufacturing thereof is disclosed. The collimator assembly includes a wall structure constructed to form a two dimensional array of channels to collimate x-rays. The wall structure further includes a first portion positioned proximate the object to be scanned and configured to absorb scattered x-rays and a second portion formed integrally with the first portion and extending out from the first portion away from the object to be scanned. The first portion of the wall structure has a height greater than a height of the second portion of the wall structure. The second portion of the wall structure includes a reflective material coated thereon in each of the channels forming the two dimensional array of channels.
    Type: Application
    Filed: December 28, 2009
    Publication date: June 30, 2011
    Inventors: Zhaoping Wu, Haochuan Jiang, Joseph James Lacey, James S. Vartuli, Yunfeng Sun, Qun Deng, Xiaoye Wu, Kun Tao, Zhaohui Yang
  • Patent number: 7756667
    Abstract: An apparatus and method for measuring the physical quantities of a data center during operation and method for servicing large-scale computing systems is disclosed. The apparatus includes a cart that supports a plurality of sensors. The cart is moveable within the data center. The sensors capture temperature or other physical parameters within the room. The sensor readings, along with position and orientation information pertaining to the cart are transmitted to a computer system where the data is analyzed to select the optimum temperature or other system environmental parameters for the data center.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: July 13, 2010
    Assignee: International Business Machines Corporation
    Inventors: Hendrik F. Hamann, Madhusudan K. Iyengar, James A. Lacey, Martin P. O'Boyle, Roger R. Schmidt
  • Patent number: 7739073
    Abstract: An apparatus and method for measuring the physical quantities of a data center during operation and method for servicing large-scale computing systems is disclosed. The apparatus includes a cart that supports a plurality of sensors. The cart is moveable within the data center. The sensors capture temperature or other physical parameters within the room. The sensor readings, along with position and orientation information pertaining to the cart are transmitted to a computer system where the data is analyzed to select the optimum temperature or other system environmental parameters for the data center.
    Type: Grant
    Filed: April 28, 2008
    Date of Patent: June 15, 2010
    Assignee: International Business Machines Corporation
    Inventors: Hendrik F. Hamann, Madhusudan K. Iyengar, James A. Lacey, Martin P. O'Boyle, Roger R. Schmidt
  • Patent number: 7698114
    Abstract: Techniques for enhancing thermal design of a system having a number of boundary values are provided. A method for such enhancement includes representing thermal response of the system to the boundary values, obtaining at least one constraining parameter, and determining spatial and/or temporal distribution of the boundary values. The thermal response is represented as a superposition of temperature fields associated with given boundary values. The spatial and/or temporal distribution of the boundary values is determined based on the thermal response represented in the representing step, so as to satisfy the constraining parameter. The boundary values can be, for example, power sources, and the at least one constraining parameter can be, for example, a spatial or temporal location of one of the power sources.
    Type: Grant
    Filed: November 2, 2005
    Date of Patent: April 13, 2010
    Assignee: International Business Machines Corporation
    Inventors: Hendrik F. Hamann, James A. Lacey, Jamil Wakil, Alan J. Weger
  • Publication number: 20100046574
    Abstract: What is disclosed is an apparatus for determining the cooling characteristics of a cooling device used for transferring heat from an electronic device. The apparatus comprising a cooling device thermally coupled to a heat pipe. The heat pipe having an exposed surface for the selective application of heat thereon. A localized heat source is selectively applied to at least one region of the exposed surface. The heat source preferably capable of being varied both positionally relative to the exposed surface and in heat intensity. A heat shield is preferably positioned around the exposed surface of the heat pipe to isolate the operational cooling device from the localized heat source. A temperature detector repeatedly measures a temperature distribution across the exposed surface while the cooling device is in a heat transfer mode. The temperature distribution is then used to thermally characterize the cooling device.
    Type: Application
    Filed: November 3, 2009
    Publication date: February 25, 2010
    Applicant: International Business Machines Corporation
    Inventors: Hendrik F. Hamann, Madhusudan K. Iyengar, James A. Lacey, Roger R. Schmidt