Patents by Inventor James M. Hamilton

James M. Hamilton has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7344961
    Abstract: The present invention is directed to methods to produce, process, and exploit nanomaterials, and particularly elongated nanowire materials. The invention provides a method for producing nanowires that includes providing a thin film of a catalyst material with varying thickness on a substrate, heating the substrate and thin film, such that the thin film disassociates at the relatively thinner regions and vapor depositing a semiconductor onto the substrate to produce nanowires. A method is also provided in which two or more thin films of different materials are overlayed over a substrate, selectively etching the first underlying thin film to create a plurality of islands of the second thin film that mask portions of the first thin film and expose other portions and growing nanowires on the first thin film. Additional methods for producing nanowires are provided.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: March 18, 2008
    Assignee: Nanosys, Inc.
    Inventors: Linda T. Romano, James M. Hamilton
  • Patent number: 7339184
    Abstract: The present invention is directed to methods to harvest, integrate and exploit nanomaterials, and particularly elongated nanowire materials. The invention provides methods for harvesting nanowires that include selectively etching a sacrificial layer placed on a nanowire growth substrate to remove nanowires. The invention also provides methods for integrating nanowires into electronic devices that include placing an outer surface of a cylinder in contact with a fluid suspension of nanowires and rolling the nanowire coated cylinder to deposit nanowires onto a surface. Methods are also provided to deposit nanowires using an ink-jet printer or an aperture to align nanowires. Additional aspects of the invention provide methods for preventing gate shorts in nanowire based transistors. Additional methods for harvesting and integrating nanowires are provided.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: March 4, 2008
    Assignee: Nanosys, Inc
    Inventors: Linda T. Romano, Jian Chen, Xiangfeng Duan, Robert S. Dubrow, Stephen A. Empedocles, Jay L. Goldman, James M. Hamilton, David L. Heald, Francesco Lemmi, Chunming Niu, Yaoling Pan, George Pontis, Vijendra Sahi, Erik C. Scher, David P. Stumbo, Jeffery A. Whiteford
  • Patent number: 7164209
    Abstract: Methods of positioning and orienting nanostructures, and particularly nanowires, on surfaces for subsequent use or integration. The methods utilize mask based processes alone or in combination with flow based alignment of the nanostructures to provide oriented and positioned nanostructures on surfaces. Also provided are populations of positioned and/or oriented nanostructures, devices that include populations of positioned and/or oriented nanostructures, systems for positioning and/or orienting nanostructures, and related devices, systems and methods.
    Type: Grant
    Filed: December 1, 2004
    Date of Patent: January 16, 2007
    Assignee: Nanosys, Inc.
    Inventors: Xiangfeng Duan, R. Hugh Daniels, Chunming Niu, Vijendra Sahi, James M. Hamilton, Linda T. Romano
  • Patent number: 7076351
    Abstract: A system and method for controlling a damping system. The system has at least two dampers for damping between sprung and unsprung masses in the compression and rebound directions. Sensors generate signals based on position and other parameters of motion representative of the displacement between the sprung and unsprung masses. The process determines the appropriate compression and rebound forces to be applied at the wheels. A regulator responds to at least one of the independent compression and rebound control signals for adjusting, respectively, at least one of compression and rebound resisting forces of the dampers between the masses. Compliance for the dampers is emulated with software to produce the desired compliance forces.
    Type: Grant
    Filed: July 24, 2002
    Date of Patent: July 11, 2006
    Assignee: Great Northern Technologies, LLC
    Inventors: James M. Hamilton, Lonnie K. Woods
  • Publication number: 20030223910
    Abstract: This invention relates to pipette systems for transferring fluid between fluid receptacles; dispensing fluid from a fluid reservoir to a fluid receptacle and the reverse; and systems capable of both transferring and dispensing fluids wherein the pipette system incorporates a flexible sealing element.
    Type: Application
    Filed: February 12, 2003
    Publication date: December 4, 2003
    Applicant: Molecular Devices Corp.
    Inventors: Joseph H. Jackson, James M. Hamilton, Samuel A. Marquiss, Charles N. Godin
  • Patent number: 6502837
    Abstract: A system and method for controlling a damping system. The system has at least two dampers for damping between sprung and unsprung masses in the compression and rebound directions. Sensors generate signals based on position and other parameters of motion representative of the displacement between the sprung and unsprung masses. The process determines the appropriate compression and rebound forces to be applied at the wheels. A regulator responds to at least one of the independent compression and rebound control signals for adjusting, respectively, at least one of compression and rebound resisting forces of the dampers between the masses. Compliance for the dampers is emulated with software to produce the desired compliance forces.
    Type: Grant
    Filed: November 11, 1999
    Date of Patent: January 7, 2003
    Assignee: Kenmar Company Trust
    Inventors: James M. Hamilton, Lonnie K. Woods
  • Publication number: 20030001346
    Abstract: A system and method for controlling a damping system. The system has at least two dampers for damping between sprung and unsprung masses in the compression and rebound directions. Sensors generate signals based on position and other parameters of motion representative of the displacement between the sprung and unsprung masses. The process determines the appropriate compression and rebound forces to be applied at the wheels. A regulator responds to at least one of the independent compression and rebound control signals for adjusting, respectively, at least one of compression and rebound resisting forces of the dampers between the masses. Compliance for the dampers is emulated with software to produce the desired compliance forces.
    Type: Application
    Filed: July 24, 2002
    Publication date: January 2, 2003
    Inventors: James M. Hamilton, Lonnie K. Woods
  • Patent number: 6296091
    Abstract: A suspension control unit as well as a control valve for such unit are provided which are incorporated in a computerized suspension system which automatically and continuously monitors and control's a vehicle's ride performance. The suspension control unit is composed of an actuator and a fluid control unit. A valve is coupled to the actuator for controlling the fluid pressure within the actuator. The valve has an annular body having a side inlet passage and an outlet opening in communication with the reservoir. A poppet driven by a solenoid is slideably fitted within the body wherein the poppet can slide between a first position blocking flow to the outlet opening and a second position not blocking the flow to the outlet opening. The poppet has a shoulder that is exposed to the inlet. Fluid pressure to the inlet of the valve acts on the differential area of the poppet to produce an poppet retracting force which is opposed by the force of an electrically adjustable solenoid.
    Type: Grant
    Filed: November 11, 1999
    Date of Patent: October 2, 2001
    Assignee: Kenmar Company Trust
    Inventor: James M. Hamilton
  • Patent number: 5735372
    Abstract: An embodiment of the present invention is a valve for selectively establishing communication of a fluid between first and second fluid bodies having first and second pressures, respectively. A valve element is carried within a valve body for liner reciprocal movement along a valve axis between a first position wherein an operative portion at the front of the valve element blocks communication between the first and the second fluid bodies and a second position wherein the first and second fluid bodies are in communication. The movement is responsive to a rearward force exerted by the fluid on the valve element due to the first pressure. The rearward force is less than the product of the first pressure and a cross-sectional area of the first fluid swept by the valve element.
    Type: Grant
    Filed: April 17, 1996
    Date of Patent: April 7, 1998
    Assignee: AimRite Systems International, Inc.
    Inventors: James M. Hamilton, Lonnie K. Woods
  • Patent number: 5707265
    Abstract: A buoyancy package for subsurface instrumented moorings with reduced drag and increased stability is provided with the use of spherical buoyant members enclosed in a pivotally connected streamlined housing. The use of a spherical buoyant member provides a buoyant member capable of withstanding high pressures for deep water applications, and in one embodiment provides a convenient structure for providing a pivot with respect to the housing.
    Type: Grant
    Filed: November 8, 1996
    Date of Patent: January 13, 1998
    Assignee: Her Majesty in right of Canada as represented by the Department of Fisheries and Oceans
    Inventors: George A. Fowler, James M. Hamilton
  • Patent number: 5529152
    Abstract: An embodiment of the present invention is a valve for selectively establishing communication of a fluid between first and second fluid bodies having first and second pressures, respectively. A valve element is carried within a valve body for linear reciprocal movement along a valve axis between a first position wherein an operative portion at the front of the valve element blocks communication between the first and the second fluid bodies and a second position wherein the first and second fluid bodies are in communication. The movement is responsive to a rearward force exerted by the fluid on the valve element due to the first pressure. The rearward force is less than the product of the first pressure and a cross-sectional area of the first fluid swept by the valve element.
    Type: Grant
    Filed: July 8, 1994
    Date of Patent: June 25, 1996
    Assignee: AimRite Systems International, Inc.
    Inventors: James M. Hamilton, Lonnie K. Woods
  • Patent number: 4793468
    Abstract: Apparatus, and a related method, for controlling a moving floor having multiple sliding slats, to produce a practically continuous load-moving force on a load carried on the apparatus. The slats are reciprocated back and forth by hydraulic cylinders, each of which controls a group of slats that are moved together. At any given time, a majority of slats are moving together in the desired direction, and carry a load in this direction at a nearly uniform velocity. The remainder of the slats are moved in a reverse direction, but at a speed that is a multiple of the forward speed of the majority of the slats. Each group of slats is moved through a forward stroke at a relatively low speed; then through a backward stroke at a higher speed.
    Type: Grant
    Filed: October 31, 1986
    Date of Patent: December 27, 1988
    Assignees: Western Waste Industries et al., American Carrier Equipment Incorporated
    Inventors: James M. Hamilton, Phillip J. Sweet
  • Patent number: 4783089
    Abstract: A method and system are set forth for leveling a vehicle chassis supported on air springs. The system and method include a position switch at each air spring which is adapted to generate a signal when the spring is compressed to or beyond a desired length representing the desired level for the vehicle chassis. Based upon the duration of the signal over a time interval a duty cycle for the spring is established. If the duty cycle is below a desired valve or range of valves this indicates the chassis is too high and the system incrementally deflates the spring. If the duty cycle is above the desired valve or range of valves this indicates the chassis is too low and the spring is incremetally deflated. Accordingly, leveling can take place when the vehicle is in motion.
    Type: Grant
    Filed: July 29, 1985
    Date of Patent: November 8, 1988
    Assignee: C & K Venture Income I-Coast
    Inventors: James M. Hamilton, Lonnie K. Woods, Michael W. Godwin
  • Patent number: 4722548
    Abstract: A vehicle suspension system in which a computer controls damping and spring forces to optimize ride and handling characteristics under a wide range of driving conditions. A combined shock absorber/air spring unit is connected between the wheel and frame of a vehicle. The shock absorber includes a hydraulic sensor which provides signals to the computer which are representative of the position of the piston within the shock absorber. The computer utilizes these signals to control compression and rebound hydraulic pressure regulators to produce preprogrammed compression and rebound damping forces that will yield the desired ride and handling. The air spring may be connected in series with the shock absorber for compression and rebound along the same axis. Pressure sensors and air pressure inlet and outlet valves are connected to the computer for adjusting the pressure within the air spring to provide the desired spring rate.
    Type: Grant
    Filed: September 29, 1986
    Date of Patent: February 2, 1988
    Inventors: James M. Hamilton, Lonnie K. Woods
  • Patent number: 4678132
    Abstract: A traction device using grooveless traction rollers. An angled roller mounting arrangement allows a number of line wraps to traverse back and forth across the rollers, following the spooling on the storage reel without the aid of a fairlead system for deployment. The device provides for automatic separation of successive line wraps on the rollers to eliminate snagging of connectors or accessories attached to the line.
    Type: Grant
    Filed: November 13, 1986
    Date of Patent: July 7, 1987
    Assignee: Canadian Patents and Development Limited
    Inventors: George A. Fowler, James M. Hamilton, William J. Whiteway
  • Patent number: 4677263
    Abstract: A position switch is set forth which is adapted to generate a signal whenever two masses, such as a vehicle sprung and unsprung mass, are at or nearer than a desired spacing. The switch includes a grounded, conical, coiled spring attached to one mass, and an electrically charged plate secured to the other mass. The spring has a relaxed length to lie adjacent the plate when the masses are at the desired spacing. When the masses are brought together the spring contacts the plate, is compressed, and the plate is grounded generating a current signal indicating that the masses are at or nearer than the desired spacing.
    Type: Grant
    Filed: July 18, 1985
    Date of Patent: June 30, 1987
    Assignee: C&K Venture Income I-Coast
    Inventors: James M. Hamilton, Bruce Burness
  • Patent number: 4651838
    Abstract: A method and system are set forth for determining the force necessary to separate a first and a second mass by using an inflatable member such as an air spring. More specifically, the invention includes a system and method for load leveling of a vehicle. The system and method includes means for determining the weight on each spring by inflating the spring at a substantially constant rate. The pressure of the gas within the air spring is sensed at time intervals and, through a microprocessor or the like, the sensed pressure at the time intervals is assembled into a pressure-time history. From the pressure time history, the pressure is determined at which the chassis begins to lift. The determined pressure is processed to give an indication of the weight of the chassis borne by the air spring. The foregoing procedure is repeated for each air spring so that a gross vehicle weight can be determined as well as the distribution of weight upon each air spring.
    Type: Grant
    Filed: October 15, 1984
    Date of Patent: March 24, 1987
    Inventors: James M. Hamilton, Lonnie K. Woods, Michael W. Godwin
  • Patent number: 4634142
    Abstract: A vehicle suspension system in which a computer controls damping and spring forces to optimize ride and handling characteristics under a wide range of driving conditions. A controllable shock absorber connected between the wheel and frame of the vehicle includes a hydraulic sensor which provides signals to the computer which are representative of the position of the piston within the shock absorber. The computer utilizes these position signals to control compression and rebound hydraulic pressure regulators by continuously computing, utilizing programmed algorithms, compression and rebound damping forces that will yield the desired ride and handling characteristics. An air spring may be connected with the shock absorber for compression and rebound along the same axis. Pressure sensors and air pressure inlet and outlet valves are connected to the computer for adjusting the pressure within the air spring to provide the desired spring rate.
    Type: Grant
    Filed: August 27, 1984
    Date of Patent: January 6, 1987
    Assignee: C & K Venture Income I-Coast
    Inventors: Lonnie K. Woods, James M. Hamilton
  • Patent number: 4468739
    Abstract: A vehicle suspension system in which a computer controls damping and spring forces to optimize ride and handling characteristics under a wide range of driving conditions. A combined shock absorber/air spring unit is connected between the wheel and frame of a vehicle. The shock absorber includes a hydraulic sensor which provides signals to the computer which are representative of the position of the piston within the shock absorber. The computer utilizes these signals to control compression and rebound hydraulic pressure regulators to produce preprogrammed compression and rebound damping forces that will yield the desired ride and handling. The air spring may be connected in series with the shock absorber for compression and rebound along the same axis. Pressure sensors and air pressure inlet and outlet valves are connected to the computer for adjusting the pressure within the air spring to provide the desired spring rate.
    Type: Grant
    Filed: February 25, 1982
    Date of Patent: August 28, 1984
    Inventors: Lonnie K. Woods, James M. Hamilton
  • Patent number: 4468050
    Abstract: A vehicle suspension system in which a computer controls damping and spring forces to optimize ride and handling characteristics under a wide range of driving conditions. A controllable shock absorber connected between the wheel and frame of the vehicle includes a hydraulic sensor which provides signals to the computer which are representative of the position of the piston within the shock absorber. The computer utilizes these position signals to control compression and rebound hydraulic pressure regulators by continuously computing, utilizing programmed algorithms, compression and rebound damping forces that will yield the desired ride and handling characteristics. An air spring may be connected with the shock absorber for compression and rebound along the same axis. Pressure sensors and air pressure inlet and outlet valves are connected to the computer for adjusting the pressure within the air spring to provide the desired spring rate.
    Type: Grant
    Filed: August 15, 1983
    Date of Patent: August 28, 1984
    Inventors: Lonnie K. Woods, James M. Hamilton