Patents by Inventor James P. Di Sarro

James P. Di Sarro has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8946766
    Abstract: Bi-directional silicon controlled rectifier device structures and design structures, as well as fabrication methods for bi-directional silicon controlled rectifier device structures. A well of a first conductivity type is formed in a device region, which may be defined from a device layer of a semiconductor-on-insulator substrate. An anode of a first silicon controlled rectifier is formed in the first well. A cathode of a second silicon controlled rectifier is formed in the first well. The anode of the first silicon controlled rectifier has the first conductivity type. The cathode of the second silicon controlled rectifier has a second conductivity type opposite to the first conductivity type.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: February 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, Jr., Junjun Li
  • Publication number: 20150001580
    Abstract: Device structures and design structures that include a silicon controlled rectifier, as well as fabrication methods for such device structures. A well is formed in the device layer of a silicon-on-insulator substrate. A silicon controlled rectifier is formed that includes an anode in the well. A deep trench capacitor is formed that includes a plate coupled with the well. The plate of the deep trench capacitor extends from the device layer through a buried insulator layer of the silicon-on-insulator substrate and into a handle wafer of the silicon-on-insulator substrate.
    Type: Application
    Filed: June 5, 2014
    Publication date: January 1, 2015
    Inventors: James P. Di Sarro, Robert J. Gauthier, JR., Tom C. Lee, Junjun Li, Souvick Mitra, Chengwen Pei, Christopher S. Putnam, Theodorus E. Standaert
  • Patent number: 8841174
    Abstract: Device structures and design structures that include a silicon controlled rectifier, as well as fabrication methods for such device structures. A well is formed in the device layer of a silicon-on-insulator substrate. A silicon controlled rectifier is formed that includes an anode in the well. A deep trench capacitor is formed that includes a plate coupled with the well. The plate of the deep trench capacitor extends from the device layer through a buried insulator layer of the silicon-on-insulator substrate and into a handle wafer of the silicon-on-insulator substrate.
    Type: Grant
    Filed: July 1, 2013
    Date of Patent: September 23, 2014
    Assignee: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Chengwen Pei, Christopher S. Putnam, Theodorus E. Standaert
  • Publication number: 20140264752
    Abstract: Various embodiments include dual three-dimensional (3D) resistor structures and methods of forming such structures. In some embodiments, a dual 3D resistor structure includes: a dielectric layer having a first set of trenches extending in a first direction through the dielectric layer; and a second set of trenches overlayed on the first set of trenches, the second set of trenches extending in a second direction through the dielectric layer, the second set of trenches and the first set of trenches forming at least one dual 3D trench; and a resistor material overlying the dielectric layer and at least partially filling the at least one dual 3D trench along the first direction and the second direction.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James P. Di Sarro, Robert J. Gauthier, JR., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam
  • Publication number: 20140239343
    Abstract: Bi-directional silicon controlled rectifier device structures and design structures, as well as fabrication methods for bi-directional silicon controlled rectifier device structures. A well of a first conductivity type is formed in a device region, which may be defined from a device layer of a semiconductor-on-insulator substrate. An anode of a first silicon controlled rectifier is formed in the first well. A cathode of a second silicon controlled rectifier is formed in the first well. The anode of the first silicon controlled rectifier has the first conductivity type. The cathode of the second silicon controlled rectifier has a second conductivity type opposite to the first conductivity type.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 28, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James P. Di Sarro, Robert J. Gauthier, JR., Junjun Li
  • Patent number: 8809129
    Abstract: Device structures, design structures, and fabrication methods for a silicon controlled rectifier. A well of a first conductivity type is formed in a device region, which may be defined from a device layer of a semiconductor-on-insulator substrate. A doped region of a second conductivity type is formed in the well. A cathode of a silicon controlled rectifier and a cathode of a diode are formed in the device region. The silicon controlled rectifier comprises a first portion of the well and an anode comprised of a first portion of the doped region. The diode comprises a second portion of the well and an anode comprised of a second portion of the doped region.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: August 19, 2014
    Assignee: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, Jr., Junjun Li
  • Patent number: 8737028
    Abstract: Methods for responding to an electrostatic discharge (ESD) event on a voltage rail, ESD protection circuits, and design structures for an ESD protection circuit. An RC network of the ESD protection circuit includes a capacitor coupled to a field effect transistor at a node. The node of the RC network is coupled with an input of the inverter. The field-effect transistor is coupled with an output of the inverter. In response to an ESD event, a trigger signal is supplied from the RC network to the input of the inverter, which drives a clamp device to discharge current from the ESD event from the voltage rail. An RC time constant of the RC network is increased in response to the ESD event to sustain the discharge of the current by the clamp device.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: May 27, 2014
    Assignee: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra
  • Publication number: 20140107822
    Abstract: A system and method sorts integrated circuit devices. Integrated circuit devices are manufactured on a wafer according to an integrated circuit design using manufacturing equipment. The design produces integrated circuit devices that are identically designed and perform differently based on manufacturing process variations. The integrated circuit devices are for use in a range of environmental conditions, when placed in service. Testing is performed on the integrated circuit devices. Environmental maximums are individually predicted for each device. The environmental maximums comprise ones of the environmental conditions that must not be exceeded for each device to perform above a given failure rate. Each integrated circuit device is assigned at least one of a plurality of grades based on the environmental maximums predicted for each device.
    Type: Application
    Filed: October 11, 2012
    Publication date: April 17, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Nathaniel R. Chadwick, James P. Di Sarro, Robert J. Gauthier, JR., Tom C. Lee, Junjun Li, Souvick Mitra, Kirk D. Peterson, Andrew A. Turner
  • Patent number: 8680573
    Abstract: Device structures, design structures, and fabrication methods for a silicon controlled rectifier. A well of a first conductivity type is formed in a device region, which may be defined from a device layer of a semiconductor-on-insulator substrate. A doped region of a second conductivity type is formed in the well. A cathode of a silicon controlled rectifier and a cathode of a diode are formed in the device region. The silicon controlled rectifier comprises a first portion of the well and an anode comprised of a first portion of the doped region. The diode comprises a second portion of the well and an anode comprised of a second portion of the doped region.
    Type: Grant
    Filed: April 25, 2012
    Date of Patent: March 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, Jr., Junjun Li
  • Publication number: 20140057397
    Abstract: Device structures, design structures, and fabrication methods for a silicon controlled rectifier. A well of a first conductivity type is formed in a device region, which may be defined from a device layer of a semiconductor-on-insulator substrate. A doped region of a second conductivity type is formed in the well. A cathode of a silicon controlled rectifier and a cathode of a diode are formed in the device region. The silicon controlled rectifier comprises a first portion of the well and an anode comprised of a first portion of the doped region. The diode comprises a second portion of the well and an anode comprised of a second portion of the doped region.
    Type: Application
    Filed: November 5, 2013
    Publication date: February 27, 2014
    Applicant: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, JR., Junjun Li
  • Patent number: 8634174
    Abstract: Protection circuits, design structures, and methods for isolating the gate and gate dielectric of a field-effect transistor from electrostatic discharge (ESD). A protection field-effect transistor is located between a protected field-effect transistor and a voltage rail. Under normal operating conditions, the protection field-effect transistor is saturated so that the protected field-effect transistor is coupled to the voltage rail. The protection field-effect transistor may be driven into a cutoff condition in response to an ESD event while the chip is unpowered, which increases the series resistance of an ESD current path between the gate of the protected field-effect transistor and the voltage rail. The voltage drop across the protection field-effect transistor may reduce the ESD stress on the gate dielectric of the protected field-effect transistor.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: January 21, 2014
    Assignee: International Business Machines Corporation
    Inventors: Michel J. Abou-Khalil, James P. Di Sarro, Robert J. Gauthier, Jr., Junjun Li, Souvick Mitra, Yang Yang
  • Publication number: 20140015053
    Abstract: Device structures, design structures, and fabrication methods for a metal-oxide-semiconductor field-effect transistor. A gate structure is formed on a top surface of a substrate. First and second trenches are formed in the substrate adjacent to a sidewall of the gate structure. The second trench is formed laterally between the first trench and the first sidewall. First and second epitaxial layers are respectively formed in the first and second trenches. A contact is formed to the first epitaxial layer, which serves as a drain. The second epitaxial layer in the second trench is not contacted so that the second epitaxial layer serves as a ballasting resistor.
    Type: Application
    Filed: July 11, 2012
    Publication date: January 16, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James P. Di Sarro, Robert J. Gauthier, JR., Junjun Li
  • Publication number: 20130335099
    Abstract: An integrated circuit having a CML driver including a driver biasing network. A first output pad and a second output pad are connected to a voltage pad. A first driver is connected to the first output pad and the voltage pad. A second driver is connected to the second output pad and the voltage pad. A first ESD circuit is connected to the voltage pad, the first output pad, and the first driver. A second ESD circuit is connected to the voltage pad, the second output pad, and the second driver. The first ESD circuit biases the first driver toward a voltage of the voltage pad when an ESD event occurs at the first output pad, and the second ESD circuit biases the second driver toward the voltage of the voltage pad when an ESD event occurs at the second output pad.
    Type: Application
    Filed: June 14, 2012
    Publication date: December 19, 2013
    Applicant: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, JR., Nathan D. Jack, Jun Jun Li, Souvick Mitra
  • Patent number: 8610249
    Abstract: Disclosed herein are embodiments of non-planar capacitor. The non-planar capacitor can comprise a plurality of fins above a semiconductor substrate. Each fin can comprise at least an insulator section on the semiconductor substrate and a semiconductor section, which has essentially uniform conductivity, stacked above the insulator section. A gate structure can traverse the center portions of the fins. This gate structure can comprise a conformal dielectric layer and a conductor layer (e.g., a blanket or conformal conductor layer) on the dielectric layer. Such a non-planar capacitor can exhibit a first capacitance, which is optionally tunable, between the conductor layer and the fins and a second capacitance between the conductor layer and the semiconductor substrate. Also disclosed herein are method embodiments, which can be used to form such a non-planar capacitor and which are compatible with current state of the art multi-gate non-planar field effect transistor (MUGFET) processing.
    Type: Grant
    Filed: March 30, 2012
    Date of Patent: December 17, 2013
    Assignee: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, Jr., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam
  • Publication number: 20130285111
    Abstract: Device structures, design structures, and fabrication methods for a silicon controlled rectifier. A well of a first conductivity type is formed in a device region, which may be defined from a device layer of a semiconductor-on-insulator substrate. A doped region of a second conductivity type is formed in the well. A cathode of a silicon controlled rectifier and a cathode of a diode are formed in the device region. The silicon controlled rectifier comprises a first portion of the well and an anode comprised of a first portion of the doped region. The diode comprises a second portion of the well and an anode comprised of a second portion of the doped region.
    Type: Application
    Filed: April 25, 2012
    Publication date: October 31, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James P. Di Sarro, Robert J. Gauthier, JR., Junjun Li
  • Publication number: 20130256835
    Abstract: Disclosed herein are embodiments of non-planar capacitor. The non-planar capacitor can comprise a plurality of fins above a semiconductor substrate. Each fin can comprise at least an insulator section on the semiconductor substrate and a semiconductor section, which has essentially uniform conductivity, stacked above the insulator section. A gate structure can traverse the center portions of the fins. This gate structure can comprise a conformal dielectric layer and a conductor layer (e.g., a blanket or conformal conductor layer) on the dielectric layer. Such a non-planar capacitor can exhibit a first capacitance, which is optionally tunable, between the conductor layer and the fins and a second capacitance between the conductor layer and the semiconductor substrate. Also disclosed herein are method embodiments, which can be used to form such a non-planar capacitor and which are compatible with current state of the art multi-gate non-planar field effect transistor (MUGFET) processing.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 3, 2013
    Applicant: International Business Machines Corporation
    Inventors: James P. Di Sarro, Robert J. Gauthier, JR., Tom C. Lee, Junjun Li, Souvick Mitra, Christopher S. Putnam
  • Publication number: 20130141823
    Abstract: Methods for responding to an electrostatic discharge (ESD) event on a voltage rail, ESD protection circuits, and design structures for an ESD protection circuit. An RC network of the ESD protection circuit includes a capacitor coupled to a field effect transistor at a node. The node of the RC network is coupled with an input of the inverter. The field-effect transistor is coupled with an output of the inverter. In response to an ESD event, a trigger signal is supplied from the RC network to the input of the inverter, which drives a clamp device to discharge current from the ESD event from the voltage rail. An RC time constant of the RC network is increased in response to the ESD event to sustain the discharge of the current by the clamp device.
    Type: Application
    Filed: December 6, 2011
    Publication date: June 6, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: James P. Di Sarro, Robert J. Gauthier, JR., Tom C. Lee, Junjun Li, Souvick Mitra
  • Publication number: 20120300349
    Abstract: Protection circuits, design structures, and methods for isolating the gate and gate dielectric of a field-effect transistor from electrostatic discharge (ESD). A protection field-effect transistor is located between a protected field-effect transistor and a voltage rail. Under normal operating conditions, the protection field-effect transistor is saturated so that the protected field-effect transistor is coupled to the voltage rail. The protection field-effect transistor may be driven into a cutoff condition in response to an ESD event while the chip is unpowered, which increases the series resistance of an ESD current path between the gate of the protected field-effect transistor and the voltage rail. The voltage drop across the protection field-effect transistor may reduce the ESD stress on the gate dielectric of the protected field-effect transistor.
    Type: Application
    Filed: May 25, 2011
    Publication date: November 29, 2012
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Michel J. Abou-Khalil, James P. Di Sarro, Robert J. Gauthier, JR., Junjun Li, Souvick Mitra, Yang Yang