Patents by Inventor James R. Giordano

James R. Giordano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190209250
    Abstract: A surgical instrument for use with a robotic system that has a control unit and a shaft portion that includes an electrically conductive elongated member that is attached to a portion of the robotic system. The elongated member is configured to transmit control motions from the robotic system to an end effector.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 11, 2019
    Inventors: James R. Giordano, Jeffrey S. Swayze, Frederick E. Shelton, IV
  • Publication number: 20190209247
    Abstract: A surgical instrument for use with a robotic system that has a control unit and a shaft portion that includes an electrically conductive elongated member that is attached to a portion of the robotic system. The elongated member is configured to transmit control motions from the robotic system to an end effector.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 11, 2019
    Inventors: James R. Giordano, Jeffrey S. Swayze, Frederick E. Shelton, IV
  • Publication number: 20190209172
    Abstract: A process and system are disclosed for downloading sensor data, stored in a memory device of a surgical cutting and fastening instrument, to an external or remote computer device. The process may involve storing data from one or more sensors of a surgical cutting and fastening instrument in a memory device of a control unit of the surgical cutting and fastening instrument during a surgical procedure involving the surgical cutting and fastening instrument. Next, after the surgical procedure, a data link between the control unit and the remote computer device is established. Then, the sensor data can be downloaded from the control unit to the remote computer device.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 11, 2019
    Inventors: Frederick E. Shelton, IV, James R. Giordano, Jeffrey S. Swayze
  • Publication number: 20190209249
    Abstract: A surgical instrument for use with a robotic system that has a control unit and a shaft portion that includes an electrically conductive elongated member that is attached to a portion of the robotic system. The elongated member is configured to transmit control motions from the robotic system to an end effector.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 11, 2019
    Inventors: James R. Giordano, Jeffrey S. Swayze, Frederick E. Shelton, IV
  • Publication number: 20190209248
    Abstract: A surgical instrument for use with a robotic system that has a control unit and a shaft portion that includes an electrically conductive elongated member that is attached to a portion of the robotic system. The elongated member is configured to transmit control motions from the robotic system to an end effector.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 11, 2019
    Inventors: James R. Giordano, Jeffrey S. Swayze, Frederick E. Shelton, IV
  • Publication number: 20190209171
    Abstract: A process and system are disclosed for downloading sensor data, stored in a memory device of a surgical cutting and fastening instrument, to an external or remote computer device. The process may involve storing data from one or more sensors of a surgical cutting and fastening instrument in a memory device of a control unit of the surgical cutting and fastening instrument during a surgical procedure involving the surgical cutting and fastening instrument. Next, after the surgical procedure, a data link between the control unit and the remote computer device is established. Then, the sensor data can be downloaded from the control unit to the remote computer device.
    Type: Application
    Filed: December 28, 2018
    Publication date: July 11, 2019
    Inventors: Frederick E. Shelton, IV, James R. Giordano, Jeffrey S. Swayze
  • Patent number: 10335614
    Abstract: Various embodiments are directed to a method of driving an end effector coupled to an ultrasonic drive system of a surgical instrument. The method comprises generating at least one electrical signal. The at least one electrical signal is monitored against a first set of logic conditions. A first response is triggered when the first set of logic conditions is met. A parameter is determined from the at least one electrical signal.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: July 2, 2019
    Assignee: Ethicon LLC
    Inventors: Jeffrey D. Messerly, Eitan T. Wiener, Brian T. Noyes, Jeffrey L. Aldridge, James R. Giordano, Robert J. Beetel, III, Daniel J. Abbott, Matthew C. Miller, Jeffrey P. Wiley, Nathan J. Price, Daniel W. Price, Robert L. Koch, Jr.
  • Patent number: 10265117
    Abstract: A method for controlling a waveform shape of a motional branch current in an ultrasonic transducer of a surgical device. The method may comprise generating a transducer drive signal by selectively recalling, using a direct digital synthesis (DDS) algorithm, drive signal waveform samples stored in a look-up table (LUT), generating samples of current and voltage of the transducer drive signal when the transducer drive signal is communicated to the surgical device, determining samples of the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and a frequency of the transducer drive signal, comparing each sample of the motional branch current to a respective target sample of a target waveform to determine an error amplitude, and modifying the drive signal waveform samples stored in the LUT such that an amplitude error between subsequent samples of the motional branch current and respective target samples is reduced.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: April 23, 2019
    Assignee: Ethicon LLC
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, James R. Giordano, Foster B. Stulen, Joseph A. Brotz, John E. Hein
  • Patent number: 10263171
    Abstract: A method for determining motional branch current in an ultrasonic transducer of an ultrasonic surgical device over multiple frequencies of a transducer drive signal. The method may comprise, at each of a plurality of frequencies of the transducer drive signal, oversampling a current and voltage of the transducer drive signal, receiving, by a processor, the current and voltage samples, and determining, by the processor, the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and the frequency of the transducer drive signal.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: April 16, 2019
    Assignee: Ethicon LLC
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, Jr., Joseph A. Brotz, John E. Hein
  • Patent number: 10238385
    Abstract: A surgical instrument system is disclosed. The surgical instrument system comprises a proximal end, a distal end, a first jaw, and a second jaw. The first jaw is movable relative to the second jaw to capture tissue. The surgical instrument system further comprises a sensor system configured to sense the impedance of the tissue at a plurality of discrete locations, a staple cartridge comprising staple cavities, staples removably stored in the staple cavities, an anvil, a firing system configured to move the staples toward the anvil, an electric motor configured to move the firing system toward the distal end during a firing stroke, and a control system. The control system is configured to evaluate the impedance of the tissue at the discrete locations and control the power applied to the electric motor during the firing stroke as the firing system moves relative to the discrete locations.
    Type: Grant
    Filed: March 25, 2015
    Date of Patent: March 26, 2019
    Assignee: ETHICON LLC
    Inventors: David C. Yates, Frederick E. Shelton, IV, James R. Giordano
  • Patent number: 10201382
    Abstract: A surgical generator is disclosed including an ultrasonic generator module to provide at an ultrasonic drive signal for driving an ultrasonic surgical device and an electrosurgical generator module to provice an electrosurgical drive signal for driving an electrosurgical device. At least one of providing the ultrasonic drive signal or providing the electrosurgical drive signal includes recalling a waveform sample from a look-up table (LUT), modifying the waveform sample to generate a modified waveform based on voltage and current feedback information to pre-distort the waveform sample on a dynamic ongoing basis, indexing each stored voltage and current feedback data pair based on a corresponding LUT sample that was output when the voltage and current feedback data pair was acquired, synchronizing the LUT sample and the voltage and current feedback data pair to correct timing and stability of the pre-distorted waveform sample, and providing the modified waveform to an output stage.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: February 12, 2019
    Assignee: Ethicon LLC
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, Jeffrey D. Messerly, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, Joseph A. Brotz, John E. Hein
  • Publication number: 20190015165
    Abstract: A surgical instrument for use with a robotic system that has a control unit and a shaft portion that includes an electrically conductive elongated member that is attached to a portion of the robotic system. The elongated member is configured to transmit control motions from the robotic system to an end effector.
    Type: Application
    Filed: July 5, 2018
    Publication date: January 17, 2019
    Inventors: James R. Giordano, Jeffrey S. Swayze, Frederick E. Shelton, IV
  • Publication number: 20180317919
    Abstract: A process and system are disclosed for downloading sensor data, stored in a memory device of a surgical cutting and fastening instrument, to an external or remote computer device. The process may involve storing data from one or more sensors of a surgical cutting and fastening instrument in a memory device of a control unit of the surgical cutting and fastening instrument during a surgical procedure involving the surgical cutting and fastening instrument. Next, after the surgical procedure, a data link between the control unit and the remote computer device is established. Then, the sensor data can be downloaded from the control unit to the remote computer device.
    Type: Application
    Filed: June 29, 2018
    Publication date: November 8, 2018
    Inventors: Frederick E. Shelton, IV, James R. Giordano, Jeffrey S. Swayze
  • Publication number: 20180311002
    Abstract: A surgical instrument for use with a robotic system that has a control unit and a shaft portion that includes an electrically conductive elongated member that is attached to a portion of the robotic system. The elongated member is configured to transmit control motions from the robotic system to an end effector.
    Type: Application
    Filed: July 5, 2018
    Publication date: November 1, 2018
    Inventors: James R. Giordano, Jeffrey S. Swayze, Frederick E. Shelton, IV
  • Publication number: 20180303482
    Abstract: A process and system are disclosed for downloading sensor data, stored in a memory device of a surgical cutting and fastening instrument, to an external or remote computer device. The process may involve storing data from one or more sensors of a surgical cutting and fastening instrument in a memory device of a control unit of the surgical cutting and fastening instrument during a surgical procedure involving the surgical cutting and fastening instrument. Next, after the surgical procedure, a data link between the control unit and the remote computer device is established. Then, the sensor data can be downloaded from the control unit to the remote computer device.
    Type: Application
    Filed: June 29, 2018
    Publication date: October 25, 2018
    Inventors: Frederick E. Shelton, IV, James R. Giordano, Jeffrey S. Swayze
  • Patent number: 10022567
    Abstract: Various embodiments are directed to a method of driving an end effector coupled to an ultrasonic drive system of a surgical instrument. In accordance with the method, a generator is configured to generate at least one time varying electrical signal having a resonant frequency, monitor the resonant frequency of the at least one electrical signal, compare the resonant frequency to a threshold frequency, and trigger a first response of the generator when the resonant frequency crosses the threshold frequency.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: July 17, 2018
    Assignee: Ethicon LLC
    Inventors: Jeffrey D. Messerly, Eitan T. Wiener, Brian T. Noyes, Jeffrey L. Aldridge, James R. Giordano, Robert J. Beetel, III, Daniel J. Abbott, Foster B. Stulen, Matthew C. Miller, Aaron C. Voegele, Jeffrey P. Wiley, Nathan J. Price, Daniel W. Price, Robert L. Koch, Jr.
  • Patent number: 10022568
    Abstract: Various embodiments are directed to a method of driving an end effector coupled to an ultrasonic drive system of a surgical instrument. In accordance with the method, a generator is configured to generate at least one time varying electrical signal having a resonant frequency, monitor the resonant frequency of the at least one electrical signal, calculate a frequency slope between frequency data points of the time varying electrical signal, where the frequency slope is the change in resonant frequency over time, compare the frequency slope to a threshold frequency slope, and trigger a first response of the generator when the frequency slope crosses the threshold frequency slope.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: July 17, 2018
    Assignee: Ethicon LLC
    Inventors: Jeffrey D. Messerly, Eitan T. Wiener, Brian T. Noyes, Jeffrey L. Aldridge, James R. Giordano, Robert J. Beetel, III, Daniel J. Abbott, Foster B. Stulen, Matthew C. Miller, Aaron C. Voegele, Jeffrey P. Wiley, Nathan J. Price, Daniel W. Price, Robert L. Koch, Jr.
  • Publication number: 20180168714
    Abstract: A method for determining motional branch current in an ultrasonic transducer of an ultrasonic surgical device over multiple frequencies of a transducer drive signal. The method may comprise, at each of a plurality of frequencies of the transducer drive signal, oversampling a current and voltage of the transducer drive signal, receiving, by a processor, the current and voltage samples, and determining, by the processor, the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and the frequency of the transducer drive signal.
    Type: Application
    Filed: March 13, 2015
    Publication date: June 21, 2018
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, Jeffrey D. Messerly, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, Joseph A. Brotz, John E. Hein
  • Publication number: 20180125590
    Abstract: A surgical instrument, such as an endoscopic or laparoscopic instrument. The surgical instrument may comprise an end effector comprising at least one sensor. The surgical instrument may also comprise an electrically conductive shaft having a distal end connected to the end effector wherein the sensor is electrically insulated from the shaft. The surgical instrument may also comprise a handle connected to a proximate end of the shaft. The handle may comprise a control unit electrically coupled to the shaft such that the shaft radiates signals as an antenna from the control unit to the sensor and receives radiated signals from the sensor. Other components electrically coupled to the shaft may also radiate the signals.
    Type: Application
    Filed: November 9, 2017
    Publication date: May 10, 2018
    Inventors: James R. Giordano, Jeffrey S. Swayze, Frederick E. Shelton, IV
  • Publication number: 20180116706
    Abstract: A method for determining motional branch current in an ultrasonic transducer of an ultrasonic surgical device over multiple frequencies of a transducer drive signal. The method may comprise, at each of a plurality of frequencies of the transducer drive signal, oversampling a current and voltage of the transducer drive signal, receiving, by a processor, the current and voltage samples, and determining, by the processor, the motional branch current based on the current and voltage samples, a static capacitance of the ultrasonic transducer and the frequency of the transducer drive signal.
    Type: Application
    Filed: March 13, 2015
    Publication date: May 3, 2018
    Inventors: Eitan T. Wiener, Jeffrey L. Aldridge, Brian T. Noyes, James R. Giordano, Robert J. Beetel, III, Nathan J. Price, Matthew C. Miller, Jeffrey P. Wiley, Daniel W. Price, Robert L. Koch, Jr., Joseph A. Brotz, John E. Hein