Patents by Inventor James R. Keogh

James R. Keogh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190175868
    Abstract: Aspects of the disclosure relate to packaging assemblies including a tray having at least one compartment adapted to receive a medical device component or product. The packaging assemblies a barrier film covering the compartment and a lid pivotally attached to the tray; wherein the tray and the lid each include cooperative latching features. The lid defines a recess in which one or more product items can be stored and the packaging assembly further includes a label removably secured over the recess and the sheet of product documentation. Methods of assembling, sterilizing and opening such packaging assemblies are also disclosed.
    Type: Application
    Filed: December 12, 2017
    Publication date: June 13, 2019
    Inventors: Courtney Spens, Jeffrey Barnell, James R. Keogh
  • Publication number: 20190151086
    Abstract: A delivery system for percutaneously delivering a heart valve prosthesis to a site of a native heart valve includes a delivery catheter and a heart valve prosthesis. The delivery catheter includes an outer sheath, an inner shaft, and an orifice restriction mechanism. The heart valve prosthesis has a valve member and a docking member. When the orifice restriction mechanism is positioned within the docking member within an annulus of the native heart valve, the orifice restriction mechanism temporarily replicates the operation of the native heart valve until the valve member is positioned within the docking member.
    Type: Application
    Filed: November 20, 2017
    Publication date: May 23, 2019
    Inventors: Marian Lally, James R. Keogh, Jason Quill
  • Patent number: 10292844
    Abstract: A tool for compressing a stented prosthesis. The tool includes first and second sets of rollers. The first set includes a plurality of rollers arranged to define a first working region having a first working diameter. The second set includes a plurality of rollers arranged to define a second working region having a second working diameter. The sets of rollers are arranged such that the working regions are axially aligned. The first working diameter is greater than the second working diameter. A stented prosthesis traversing the first working region and then the second working region is forced to a compressed state. In some embodiments, the tool includes one or more intermediate sets of rollers between the first and second sets of rollers, with each of the intermediate sets of rollers defining a working region having a working diameter. The respective working diameters progressively decrease in a downstream direction.
    Type: Grant
    Filed: May 17, 2016
    Date of Patent: May 21, 2019
    Assignee: Medtronic Vascular, Inc.
    Inventors: Geoffrey Orth, Kenny Bruner, Don Tran, Jill Mendelson, James R. Keogh
  • Publication number: 20190142587
    Abstract: A catheter-based system for percutaneously supporting and articulating a septal wall of a heart includes a catheter and a flanged device. The flanged device includes a distal anchor and a proximal anchor, and has a radially collapsed configuration and a radially expanded configuration. When the flanged device is in the radially expanded configuration and disposed through a transseptal puncture in the septal wall, the flanged device is configured to anchor to the septal wall to permit manipulation thereof whereby an angle between an axis through the transseptal puncture and an axis through a native valve is reduced. The proximal anchor and the distal anchor may each be self-expanding or balloon expandable. The flanged device may further include a flanged device shaft. The flanged device shaft may be releasably coupled to the catheter.
    Type: Application
    Filed: November 14, 2018
    Publication date: May 16, 2019
    Inventors: Niall Duffy, Jeffrey Sandstrom, James R. Keogh
  • Patent number: 10278723
    Abstract: A device for temporarily sealing an opening in a blood vessel is provided. The device comprises a cutting mechanism for creating an opening in a blood vessel and a seal for sealing the opening in the blood vessel. The seal is delivered through an inner lumen of a tool body coupled to the cutting mechanism. Methods for using the device to construct an anastomosis between two vessels are also provided.
    Type: Grant
    Filed: January 15, 2010
    Date of Patent: May 7, 2019
    Assignee: Medtronic, Inc.
    Inventors: Scott E. Jahns, James R. Keogh, Paul A. Pignato, Christopher P. Olig, Karen P. Montpetit, Cynthia T. Clague, Raymond W. Usher, Philip J. Haarstad, Gary W. Guenst
  • Publication number: 20190060063
    Abstract: A transcatheter prosthesis with radially compressed and expanded configurations. An elongate member encircling at least a portion of the prosthesis, and configured to provide a seal between the prosthesis and a native anatomy when the prosthesis is deployed in the radially expanded configuration. The elongate member may be a resilient elongate member having a radially contracted state, when in tension, to hold at least the portion of the prosthesis in the radially compressed configuration, and having a radially expanded state, when relaxed, to provide the seal between at least the portion of the prosthesis and a native anatomy when the prosthesis is deployed. A system for delivering the transcatheter prosthesis may include a delivery catheter having an elongate cinching member encircling at least a second portion of the prosthesis, wherein the elongate cinching member is configured to hold the second portion of the prosthesis in the radially compressed configuration.
    Type: Application
    Filed: August 24, 2017
    Publication date: February 28, 2019
    Inventors: Patrick Griffin, James R. Keogh
  • Publication number: 20190060062
    Abstract: A transcatheter prosthesis with radially compressed and expanded configurations. An elongate member encircling at least a portion of the prosthesis, and configured to provide a seal between the prosthesis and a native anatomy when the prosthesis is deployed in the radially expanded configuration. The elongate member may be a resilient elongate member having a radially contracted state, when in tension, to hold at least the portion of the prosthesis in the radially compressed configuration, and having a radially expanded state, when relaxed, to provide the seal between at least the portion of the prosthesis and a native anatomy when the prosthesis is deployed. A system for delivering the transcatheter prosthesis may include a delivery catheter having an elongate cinching member encircling at least a second portion of the prosthesis, wherein the elongate cinching member is configured to hold the second portion of the prosthesis in the radially compressed configuration.
    Type: Application
    Filed: August 24, 2017
    Publication date: February 28, 2019
    Inventors: Patrick Griffin, James R. Keogh
  • Publication number: 20190008635
    Abstract: The present technology is a prosthetic heart valve device, and related systems and methods, for treating a native valve of a human heart having a native annulus and native leaflets. One embodiment comprises a valve support, a prosthetic valve assembly within the valve support, and an anchoring member having an upstream portion and a downstream portion. The device further includes an extension member coupled to the fixation frame and extending radially outward therefrom. The extension member includes a plurality of wires, at least a portion of which include an inner core surrounded by an outer material. The wires include a plurality of recesses extending through at least a portion of the thickness of the outer material, and a therapeutic agent in the recesses for delivery to the anatomy when the prosthetic heart valve device is positioned at a native annulus.
    Type: Application
    Filed: July 6, 2017
    Publication date: January 10, 2019
    Inventors: Richard Francis, Scott Robertson, Marian Lally, Alexander Hill, Katherine Miyashiro, Paraic Frisby, James R. Keogh
  • Publication number: 20180318076
    Abstract: A valve delivery system and valve delivery method are disclosed. The valve delivery system includes an inner shaft extending along a longitudinal axis and an elongated tension member to continuously circumferentially coil around a prosthetic valve disposed on the inner shaft to form a sheath portion to releasably contain the prosthetic valve on the inner shaft in a compressed state, the elongated tension member extending from the sheath portion along the longitudinal axis of the inner shaft.
    Type: Application
    Filed: May 8, 2017
    Publication date: November 8, 2018
    Inventors: Marc Anderson, Niall Crosbie, James R. Keogh
  • Publication number: 20180263651
    Abstract: A device and method for ablating tissue is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding an ablating member within the patient while tracking the position of the ablating member in the patient, positioning the ablating member in a desired position to ablate tissue, emitting ablating energy from the ablating member to form an ablated tissue area and removing the ablating member from the patient.
    Type: Application
    Filed: March 12, 2018
    Publication date: September 20, 2018
    Inventors: James B. Hissong, Mark T. Stewart, David E. Francischelli, James R. Keogh, Hotaik Lee, Nadine B. Smith, James R. Skarda
  • Publication number: 20180256332
    Abstract: Delivery devices and device elements that provide steering capabilities and methods of steering such delivery devices during the delivery of a stented prosthesis to a target site. Various delivery devices include a shaft assembly having a plurality of lumens through which tension members that compressively retain the stented prosthesis to the shaft assembly are routed. By selectively tensioning one or more tension members, the shaft assembly can be pulled or steered in a desired direction. Various embodiments include one or more steering or stiffening rods that can reinforce the device or counteract any unintended bending or steering of the delivery device.
    Type: Application
    Filed: March 9, 2018
    Publication date: September 13, 2018
    Inventors: Michael Gloss, James R. Keogh, Timothy Ryan, Declan P. Costello, Wayne M. Falk
  • Patent number: 10016273
    Abstract: A transcatheter valve prosthesis includes a stent having a compressed configuration for delivery within a vasculature and an expanded configuration for deployment within a native heart valve and a prosthetic valve component disposed within and secured to the stent. A compartment is coupled to the stent, and a filtered opening into the compartment is configured to permit blood flow there-through and to trap emboli in the blood flow within the compartment.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: July 10, 2018
    Assignee: MEDTRONIC, INC.
    Inventor: James R. Keogh
  • Patent number: 9949831
    Abstract: A method for determining whether a medical device is appropriate for implanting into a cardiovascular conduit of a patient is disclosed comprising imaging a first section of the conduit of the patient into which the medical device is to be implanted during a first expanded state occurring at a first portion of a heart rhythm; reimaging the first section of the conduit of the patient during a first contracted state occurring at a second portion of the heart rhythm; deriving, from the imaging and the reimaging, dimensional characteristics of the first section of the conduit; and determining whether the medical device is appropriate for implantation in the first section of conduit based on the derived dimensional characteristics. The first section of the conduit includes a sizing device providing a selected radial force on the patient.
    Type: Grant
    Filed: February 6, 2014
    Date of Patent: April 24, 2018
    Assignee: Medtronics, Inc.
    Inventors: James R. Keogh, Timothy R. Ryan, Carol E. Eberhardt, Mark T. Stewart, James R. Skarda, Timothy G. Laske, Alexander J. Hill, Jack D. Lemmon, David E. Francischelli
  • Patent number: 9931134
    Abstract: A device and method for ablating tissue is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding an ablating member within the patient while tracking the position of the ablating member in the patient, positioning the ablating member in a desired position to ablate tissue, emitting ablating energy from the ablating member to form an ablated tissue area and removing the ablating member from the patient.
    Type: Grant
    Filed: July 5, 2017
    Date of Patent: April 3, 2018
    Assignee: Medtronic, Inc.
    Inventors: James B. Hissong, Mark T. Stewart, David E. Francischelli, James R. Keogh, Hotaik Lee, Nadine B. Smith, James R. Skarda
  • Publication number: 20170333228
    Abstract: A tool for compressing a stented prosthesis. The tool includes first and second sets of rollers. The first set includes a plurality of rollers arranged to define a first working region having a first working diameter. The second set includes a plurality of rollers arranged to define a second working region having a second working diameter. The sets of rollers are arranged such that the working regions are axially aligned. The first working diameter is greater than the second working diameter. A stented prosthesis traversing the first working region and then the second working region is forced to a compressed state. In some embodiments, the tool includes one or more intermediate sets of rollers between the first and second sets of rollers, with each of the intermediate sets of rollers defining a working region having a working diameter. The respective working diameters progressively decrease in a downstream direction.
    Type: Application
    Filed: May 17, 2016
    Publication date: November 23, 2017
    Inventors: Geoffrey Orth, Kenny Bruner, Don Tran, Jill Mendelson, James R. Keogh
  • Publication number: 20170296217
    Abstract: A device and method for ablating tissue is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding an ablating member within the patient while tracking the position of the ablating member in the patient, positioning the ablating member in a desired position to ablate tissue, emitting ablating energy from the ablating member to form an ablated tissue area and removing the ablating member from the patient.
    Type: Application
    Filed: July 5, 2017
    Publication date: October 19, 2017
    Inventors: James B. Hissong, Mark T. Stewart, David E. Francischelli, James R. Keogh, Hotaik Lee, Nadine B. Smith, James R. Skarda
  • Publication number: 20170258586
    Abstract: Stented prosthetic heart valves comprising a stent frame having a compressed arrangement for delivery within a patient's vasculature and an expanded arrangement for deployment within a native heart valve. The stented prosthetic heart valves including a paravalvular leakage prevention or mitigation wrap that encircles a stent frame and is formed of a flexible material having a variable diameter defined by a greatest distance between the wrap and the stent frame. The wrap further includes a first end coupled to the stent frame and an opposing second end that is not coupled to the stent frame, wherein the wrap can selectively enlarge its diameter in situ via movement of the second end. Devices for and methods of selectively deploying the wrap are also disclosed.
    Type: Application
    Filed: March 14, 2017
    Publication date: September 14, 2017
    Inventors: Michael Bateman, Cynthia Clague, Jeffrey Sandstrom, Joel Racchini, James R. Keogh
  • Patent number: 9724119
    Abstract: A device and method for ablating tissue is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding an ablating member within the patient while tracking the position of the ablating member in the patient, positioning the ablating member in a desired position to ablate tissue, emitting ablating energy from the ablating member to form an ablated tissue area and removing the ablating member from the patient.
    Type: Grant
    Filed: December 2, 2015
    Date of Patent: August 8, 2017
    Assignee: Medtronic, Inc.
    Inventors: James B. Hissong, Mark T. Stewart, David E. Francischelli, James R. Keogh, Hotaik Lee, Nadine B. Smith, James R. Skarda
  • Patent number: 9693819
    Abstract: An ablation apparatus including a maneuvering mechanism, a conductive element attached to the apparatus, a sensor attached to the apparatus and an output device in communication with the sensor is provided. The sensor senses vibration during the ablation procedure and sends a signal to the output device to reduce power to the conductive element.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: July 4, 2017
    Assignee: Medtronic, Inc.
    Inventors: David E. Francischelli, Scott E. Jahns, James R. Keogh
  • Publication number: 20170165065
    Abstract: A delivery system for transcatheter implantation of a heart valve prosthesis. The delivery system includes an outer sheath component defining a lumen therethrough, an elongate tube having at least two flat wires longitudinally extending from a distal end thereof, and self-expanding first and second frames disposed in series within a distal portion of the outer sheath component and held in a compressed delivery configuration therein. The elongate tube and the at least two flat wires are slidably disposed within the lumen of the outer sheath component. In the compressed delivery configuration the at least two flat wires longitudinally extend along exterior portions of the first and second frames and are woven through adjacent ends of the first and second frames to releasably couple them to each other. Proximal retraction of the at least two flat wires from the first and second frames releases at least the first frame from the delivery system.
    Type: Application
    Filed: December 14, 2015
    Publication date: June 15, 2017
    Inventors: Paul Rothstein, James R. Keogh