Patents by Inventor James R. Keogh

James R. Keogh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7963963
    Abstract: A hemostat-type device for ablative treatment of tissue, particularly for treatment of atrial fibrillation, is constructed with features that provide easy and effective treatment. The device may include a swiveling head assembly that allows the jaws to be adjusted in pitch and/or roll. The device may include a malleable or articulating handle shaft, as well as, malleable or curved rigid jaws that can permit curved lesion shapes. A locking detent can secure the jaws in a closed position during the procedure. The device may include one or more remote actuators making the hemostat-type device useful for minimally invasive procedures.
    Type: Grant
    Filed: January 21, 2005
    Date of Patent: June 21, 2011
    Assignee: Medtronic, Inc.
    Inventors: David E. Francischelli, Roderick E. Briscoe, Paul T. Rothstein, David Jin Sung Kim, James R. Keogh, Tom P. Daigle, Adam A. Podbeliski, Stephen J. Roddy, Steve Christian, Brian Ross, James Skarda, Scott E. Jahns, Alison Lutterman
  • Publication number: 20110054466
    Abstract: An ablation catheter including an inner tube having a length, a distal end and a longitudinal axis, a plurality of needles extending from the distal end of the inner tube and biased away from the longitudinal axis, an outer sheath slideably moveable relative to the inner tube to surround at least a portion of the length of the inner tube and its extending needles, and a radio frequency energy source electrically connected to the plurality of needles.
    Type: Application
    Filed: April 30, 2010
    Publication date: March 3, 2011
    Applicant: Medtronic, Inc.
    Inventors: Paul T. Rothstein, Cathleen A. Bergin, Cynthia T. Clague, Michael M. Green, Alexander J. Hill, James R. Keogh, Timothy G. Laske
  • Publication number: 20100198346
    Abstract: A device and method for valve replacement or valve repair is disclosed comprising the steps of acquiring an anatomical image of a patient, correlating the image to the patient, guiding a valve replacement delivery member or a valve repair delivery member within the patient while tracking the position of the delivery member in the patient, positioning the valve replacement member or valve repair member in a desired position to place a valve or repair valve and removing the delivery member from the patient. In one aspect of the invention, a delivery system is provided for percutaneous delivery of a heart valve to a predetermined position in the heart of a patient, where the delivery system itself includes features that allow it to be accurately positioned in the heart. In another aspect of the invention, a delivery system is provided for percutaneous repair of a heart valve in the heart of a patient, where the repair system itself includes features that allow it to be accurately positioned in the heart.
    Type: Application
    Filed: September 30, 2009
    Publication date: August 5, 2010
    Inventors: James R. Keogh, Timothy R. Ryan, Carol E. Eberhardt, Mark T. Stewart, James R. Skarda, Timothy G. Laske, Alexander J. Hill, Jack D. Lemmon, David E. Francischelli
  • Publication number: 20100174281
    Abstract: A device for temporarily sealing an opening in a blood vessel is provided. The device comprises a cutting mechanism for creating an opening in a blood vessel and a seal for sealing the opening in the blood vessel. The seal is delivered through an inner lumen of a tool body coupled to the cutting mechanism. Methods for using the device to construct an anastomosis between two vessels are also provided.
    Type: Application
    Filed: January 15, 2010
    Publication date: July 8, 2010
    Inventors: Scott E. Jahns, James R. Keogh, Paul A. Pignato, Christopher P. Olig, Karen P. Montpetit, Cynthia T. Clague, Raymond W. Usher, Philip J. Haarstad, Gary W. Guenst
  • Patent number: 7744562
    Abstract: Apparatus and methods for injecting biological agents into tissue. Devices are provided having elongate shafts and distal injection heads for transversely driving needles into tissue and injecting medical agents into the tissue through the needles. A longitudinal force directed along the shaft can be translated to a needle driving force transverse to the shaft. Some devices provide controllably variable needle penetration depth. Devices include mechanical needle drivers utilizing four link pantographs, rack and pinions, and drive yokes for driving a first needle bearing body toward a second tissue contacting body. Other devices include inflatable members for driving and retracting needles. Still other devices include magnets for biasing the needles in extended and/or retracted positions. The invention includes minimally invasive methods for epicardially injecting cardiocyte precursor cells into infarct myocardial tissue.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: June 29, 2010
    Assignee: Medtronics, Inc.
    Inventors: Scott E. Jahns, Gary S. Oehme, Matthew D. Bonner, James R. Keogh
  • Patent number: 7740623
    Abstract: The current invention discloses a method for treating infracted/ischemic injury to a myocardium by injecting a substance into the myocardium. The injected substance helps to prevent negative adaptive remodeling by providing mechanical reinforcement or mechanical reinforcement combined with biological therapy. A number of substances for injection are disclosed, including multi component substances such as platelet gel, and other substances. The substances disclosed may contain additives to augment/enhance the desired effects of the injection. The invention also discloses devices used to inject the substances. The devices can include means for ensuring needles do not penetrate beyond a desired depth into the myocardium. The devices can also include needles having multiple lumens such that the components of the platelet gel will be combined at the injection site and begin polymerization in the myocardium.
    Type: Grant
    Filed: June 23, 2005
    Date of Patent: June 22, 2010
    Assignee: Medtronic, Inc.
    Inventors: Asha S. Nayak, Matthew D. Bonner, Paul T. Rothstein, Prasanga D. Hiniduma-Lokuge, James R. Keogh, Raymond W. Usher, Scott E. Jahns, Victor T. Chen
  • Publication number: 20100121362
    Abstract: Embodiments of the invention provide a vessel support system and a method of vessel harvesting. The system can include a cutting device, a catheter adapted to be inserted into a section of the vessel in order to support the vessel as the cutting device is advanced over the vessel, and a cannula adapted to be coupled to the vessel and adapted to receive the catheter as the catheter is inserted into the section of the vessel. The method can include orienting a cutting device coaxially with the cannula and the catheter and advancing the cutting device over the cannula, the catheter, and the section of the vessel in order to core out the section of the vessel and a portion of the surrounding tissue.
    Type: Application
    Filed: January 19, 2010
    Publication date: May 13, 2010
    Applicant: SCOTTSDALE MEDICAL DEVICES, INC.
    Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Olig, Ana R. Menk, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Thomas P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns, Philip J. Haarstad
  • Publication number: 20100114136
    Abstract: Embodiments of the invention provide a cutting device and method of vessel harvesting. The cutting device can include at least one tubular member, a cutting element, and a centering member. The cutting device can include at least one tubular member with a flexible section and a cutting element. The method of vessel harvesting can include spacing a cutting element of the cutting device from the vessel as the cutting element is advanced over the vessel.
    Type: Application
    Filed: January 15, 2010
    Publication date: May 6, 2010
    Applicant: SCOTTSDALE MEDICAL DEVICES, INC.
    Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Olig, Ana R. Menk, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Thomas P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns, Philip J. Haarstad
  • Patent number: 7711421
    Abstract: A method of performing a medical procedure is provided. The medical procedure includes stimulation of a patient's heart while stimulating a nerve of the patient in order to modulate the patient's inflammatory process. More particularly, the medical procedure includes pacing the ventricles of the patient's heart while stimulating the vagal nerve of the patient. Systems and devices for performing the medical procedure are also provided.
    Type: Grant
    Filed: August 8, 2007
    Date of Patent: May 4, 2010
    Assignee: Medtronic, Inc.
    Inventors: Lisa L. Shafer, Steve R. LaPorte, James R. Keogh, Michael R. S. Hill, Matthew D. Bonner
  • Patent number: 7706882
    Abstract: A method of thermal ablation using high intensity focused ultrasound energy includes the steps of positioning one or more ultrasound emitting members within a patient, emitting ultrasound energy from the one or more ultrasound emitting members, focusing the ultrasound energy, ablating with the focused ultrasound energy to form an ablated tissue area and removing the ultrasound emitting member.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: April 27, 2010
    Assignee: Medtronic, Inc.
    Inventors: David E. Francischelli, James B. Hissong, James R. Keogh, James R. Skarda, Mark T. Stewart
  • Publication number: 20100069844
    Abstract: Apparatus and methods for injecting biological agents into tissue. Devices are provided having elongate shafts and distal injection heads for driving needles into tissue and injecting medical agents into the tissue through the needles. A longitudinal force directed along the shaft can be translated to a needle driving force. Some devices provide controllably variable needle penetration depth. Devices include mechanical needle drivers utilizing four link pantographs, rack and pinions, and drive yokes for driving a first needle bearing body toward a second tissue contacting body. Other devices include inflatable members for driving and retracting needles. Still other devices include magnets for biasing the needles in extended and/or retracted positions. The invention includes minimally invasive methods for epicardially injecting cardiocyte precursor cells into infarct myocardial tissue.
    Type: Application
    Filed: October 30, 2009
    Publication date: March 18, 2010
    Inventors: Matthew D. Bonner, Paul T. Rothstein, Prasanga D. Hiniduma-Lokuge, James R. Keogh, Raymond W. Usher, Scott Eric Jahns, Victor T. Chen
  • Publication number: 20100063475
    Abstract: Apparatus and methods for injecting biological agents into tissue. Devices are provided having elongate shafts and distal injection heads for transversely driving needles into tissue and injecting medical agents into the tissue through the needles. A longitudinal force directed along the shaft can be translated to a needle driving force transverse to the shaft. Some devices provide controllably variable needle penetration depth. Devices include mechanical needle drivers utilizing four link pantographs, rack and pinions, and drive yokes for driving a first needle bearing body toward a second tissue contacting body. Other devices include inflatable members for driving and retracting needles. Still other devices include magnets for biasing the needles in extended and/or retracted positions. The invention includes minimally invasive methods for epicardially injecting cardiocyte precursor cells into infarct myocardial tissue.
    Type: Application
    Filed: November 18, 2009
    Publication date: March 11, 2010
    Inventors: Scott E. Jahns, Gary S. Oehme, Matthew D. Bonner, James R. Keogh
  • Publication number: 20100004708
    Abstract: A method of performing a medical procedure, such as surgery, is provided. A nerve is stimulated in order to adjust the beating of the heart to a first condition, such as a stopped or slowed condition. The medical procedure is performed on the heart or another organ. The stimulation of the nerve is stopped in order to adjust the beating of the heart to a second condition, such as a beating condition. The heart itself may also be stimulated to a beating condition, such as by pacing. The stimulation of the nerve may be continued in order to allow the medical procedure to be continued. A sensor to sense a characteristic of a fluid or tissue, such as an impending contraction, may be also used during the medical procedure. Systems and devices for performing the medical procedure are also provided.
    Type: Application
    Filed: September 11, 2009
    Publication date: January 7, 2010
    Applicant: Medtronic, Inc.
    Inventors: Scott E. Jahns, Michael R.S. Hill, James R. Keogh
  • Publication number: 20090324803
    Abstract: A method for making a medical device having at least one biomolecule immobilized on a substrate surface is provided. One method of the present invention includes immobilizing a biomolecule comprising an unsubstituted amide moiety on a biomaterial surface. Another method of the present invention includes immobilizing a biomolecule on a biomaterial surface comprising an unsubstituted amide moiety. Still another method of the present invention may be employed to crosslink biomolecules comprising unsubstituted amide moieties immobilized on medical device surfaces. Additionally, one method of the present invention may be employed to crosslink biomolecules comprising unsubstituted amide moieties in solution, thereby forming a crosslinked biomaterial or a crosslinked medical device coating.
    Type: Application
    Filed: June 1, 2009
    Publication date: December 31, 2009
    Inventors: James R. Keogh, Paul V. Trescony
  • Publication number: 20090326527
    Abstract: An instrument including an elongated shaft and a non-conductive handle is disclosed. The shaft defines a proximal section and a distal section. The distal section forms an electrically conductive tip. Further, the shaft is adapted to be transitionable from a straight state to a first bent state. The shaft is capable of independently maintaining the distinct shapes associated with the straight state and the first bent state. The handle is rigidly coupled to the proximal section of the shaft. The instrument is useful for epicardial pacing and/or mapping of the heart for temporary pacing on a beating heart, for optimizing the placement of ventricular leads for the treatment of patients with congestive heart failure and ventricular dysynchrony and/or for use in surgical ablation procedures.
    Type: Application
    Filed: June 9, 2009
    Publication date: December 31, 2009
    Inventors: Jon M. Ocel, Roderick E. Briscoe, David E. Francischelli, Scott E. Jahns, James R. Keogh, Katherine S. Jolly, Matthew D. Bonner
  • Patent number: 7628780
    Abstract: Apparatus and methods for injecting biological agents into tissue. Devices are provided having elongate shafts and distal injection heads for driving needles into tissue and injecting medical agents into the tissue through the needles. A longitudinal force directed along the shaft can be translated to a needle driving force. Some devices provide controllably variable needle penetration depth. Devices include mechanical needle drivers utilizing four link pantographs, rack and pinions, and drive yokes for driving a first needle bearing body toward a second tissue contacting body. Other devices include inflatable members for driving and retracting needles. Still other devices include magnets for biasing the needles in extended and/or retracted positions. The invention includes minimally invasive methods for epicardially injecting cardiocyte precursor cells into infarct myocardial tissue.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: December 8, 2009
    Assignee: Medtronic, Inc.
    Inventors: Matthew D. Bonner, Paul T. Rothstein, Prasanga D. Hiniduma-Lokuge, James R. Keogh, Raymond W. Usher, Scott Eric Jahns, Victor T. Chen
  • Publication number: 20090143638
    Abstract: This invention provides a system and method for positioning, manipulating, holding, grasping, immobilizing and/or stabilizing a heart including one or more tissue-engaging devices, one or more suction sources, one or more fluid sources, one or more energy sources, one or more sensors and one or more processors. The system and method may include an indifferent electrode, a drug delivery device and an illumination device. The system's tissue-engaging device may comprise a tissue-engaging head, a support apparatus and a clamping mechanism for attaching the tissue-engaging device to a stable object. The system may be used during various medical procedures including the deployment of an anastomotic device, intermittently stopping and starting of the heart, ablation of cardiac tissues and the placement of cardiac leads.
    Type: Application
    Filed: February 9, 2009
    Publication date: June 4, 2009
    Applicant: Medtronic, Inc.
    Inventors: James R. Keogh, Scott E. Jahns, Michael A. Colson, Karen Montpetit, Thomas Daigle, Douglas H. Gubbin, Gary W. Guenst, Christopher Olig, Paul A. Pignato, William G. O'Neill, Katherine Jolly
  • Publication number: 20090137900
    Abstract: Methods and apparatus employed to locate body vessels and occlusions in body vessels finding particular utility in cardiac surgery, particularly minimally invasive cardiac surgery to locate cardiac arteries and occlusions in cardiac arteries are disclosed. An elongated vessel lumen probe incorporating a lumen probe element at or near the elongated vessel lumen probe distal end is advanced into the vessel lumen. A vessel surface probe manipulated by the surgeon and having a surface probe element sensor is employed to detect the lumen probe element and to follow the progress of the vessel lumen probe element as it approaches and is advanced through or is blocked by an occlusion. In the location of a coronary artery, the surface probe element sensor is moved about against the epicardium over the suspected location of the artery of interest until a surface probe element sensor of the present invention at the surface probe distal end interacts with the lumen probe element of the vessel lumen probe.
    Type: Application
    Filed: January 30, 2009
    Publication date: May 28, 2009
    Applicant: Medtronic, Inc.
    Inventors: Mathew D. Bonner, Cynthia T. Clague, Scott E. Jahns, James R. Keogh
  • Patent number: 7507235
    Abstract: This invention provides a system and method for positioning, manipulating, holding, grasping, immobilizing and/or stabilizing a heart including one or more tissue-engaging devices, one or more suction sources, one or more fluid sources, one or more energy sources, one or more sensors and one or more processors. The system and method may include an indifferent electrode, a drug delivery device and an illumination device. The system's tissue-engaging device may comprise a tissue-engaging head, a support apparatus and a clamping mechanism for attaching the tissue-engaging device to a stable object. The system may be used during various medical procedures including the deployment of an anastomotic device, intermittently stopping and starting of the heart, ablation of cardiac tissues and the placement of cardiac leads.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: March 24, 2009
    Assignee: Medtronic, Inc.
    Inventors: James R. Keogh, Scott E Jahns, Michael A. Colson, Gary W. Guenst, Christopher Olig, Paul A. Pignato, Karen Montpetit, Thomas Daigle, Douglas H. Gubbin, William G. O'Neill, Katherine Jolly
  • Patent number: 7493154
    Abstract: Methods and apparatus employed to locate body vessels and occlusions in body vessels finding particular utility in cardiac surgery, particularly minimally invasive cardiac surgery to locate cardiac arteries and occlusions in cardiac arteries are disclosed. An elongated vessel lumen probe incorporating a lumen probe element at or near the elongated vessel lumen probe distal end is advanced into the vessel lumen. A vessel surface probe manipulated by the surgeon and having a surface probe element sensor is employed to detect the lumen probe element and to follow the progress of the vessel lumen probe element as it approaches and is advanced through or is blocked by an occlusion. In the location of a coronary artery, the surface probe element sensor is moved about against the epicardium over the suspected location of the artery of interest until a surface probe element sensor of the present invention at the surface probe distal end interacts with the lumen probe element of the vessel lumen probe.
    Type: Grant
    Filed: October 23, 2002
    Date of Patent: February 17, 2009
    Assignee: Medtronic, Inc.
    Inventors: Matthew D. Bonner, Cynthia T. Clague, Scott E. Jahns, James R. Keogh