Patents by Inventor James R. Wilson

James R. Wilson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10466392
    Abstract: A window or other component may have glass layers and an interposed polymer layer in which a textured light-scattering layer with a diffuse reflectivity is embedded. The textured light-scattering layer may have a textured polymer carrier film coated with a partially reflective layer such as a metal layer. The polymer carrier film may be textured to cause gaps to form within the partially reflective layer. The gaps may be patterned to form ohmic heating current paths or other signal paths through the partially reflective layer. The partially reflective layer may also serve as an electrode in a light modulator such as a liquid crystal light modulator or other light modulator. Images may be projected onto the textured light-scattering layer. The light-scattering layer may also help extract light from a light guiding layer adjacent to the partially reflective layer.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: November 5, 2019
    Assignee: Apple Inc.
    Inventors: Martin Melcher, Christopher D. Jones, James R. Wilson, Matthew S. Rogers, Clarisse Mazuir, Gregory A. Cohoon, Matthew E. Last
  • Patent number: 10453580
    Abstract: A system such as a vehicle may have windows. A window may have rigid clear layers such as layers of glass or rigid polymer. A polymer layer may be interposed between the rigid clear layers to form a laminated window structure. A conductive layer such as a silver layer or other metal layer in the window may be configured to block infrared light. The conductive layer may be patterned to form signal paths, a radio-transparent region, and other structures in a window. The conductive layer may be formed as a coating on a rigid clear window layer or may be formed on other window structures. The conductive layer may be patterned by removing conductive material from areas of the conductive layer. An insulating layer that visually matches the conductive layer may be formed in these areas without overlapping the conductive area.
    Type: Grant
    Filed: June 23, 2017
    Date of Patent: October 22, 2019
    Assignee: Apple Inc.
    Inventors: James R. Wilson, Christopher D. Jones, Martin Melcher
  • Publication number: 20190297177
    Abstract: An electronic device may have a housing in which electrical components such as a display and other components are mounted. Adjustable decoration may be formed on the electronic device. The adjustable decoration may serve as trim for the housing or a component mounted on the housing, may include a logo, or may be used to form other visual elements. The adjustable decoration may have an appearance that is electrically adjustable by control circuitry in the electronic device. The control circuitry may measure sensor data using sensors, may gather user input from input-output devices, and may gather other information with input-output devices to detect events. When an event is detected such as an incoming communication, a calendar reminder, user input, activation of an electrical component such as a camera, or other event, the control circuitry can adjust the appearance of the adjustable decoration.
    Type: Application
    Filed: September 18, 2018
    Publication date: September 26, 2019
    Inventors: James R. Wilson, Marta M. Giachino, Matthew S. Rogers
  • Publication number: 20190292563
    Abstract: Sequences of a serotype 8 adeno-associated virus and vectors and host cells containing these sequences are provided. Also described are methods of using such host cells and vectors in production of rAAV particles.
    Type: Application
    Filed: April 8, 2019
    Publication date: September 26, 2019
    Inventors: Guangping Gao, James M. Wilson, Mauricio R. Alvira
  • Patent number: 10424022
    Abstract: A method for providing vehicle operation data to a remote computer or server for calculation of a vehicle insurance premium for a period of time based at least in part on collected vehicle operation data, wherein the method includes steps of: collecting vehicle operation data via a mobile device while the mobile device is associated with an operating vehicle, wherein the vehicle operation data has insurance risk predictive power; and transmitting the collected vehicle operation data from the mobile device to a remote computer. The remote computer or server receives collected vehicle operation data, stores the collected vehicle operation data in a database, a determines a vehicle insurance premium via a rating engine based at least in part on collected vehicle operation data.
    Type: Grant
    Filed: January 24, 2017
    Date of Patent: September 24, 2019
    Assignee: STATE FARM MUTUAL AUTOMOBILE INSURANCE COMPANY
    Inventors: Benjamin F. Bowne, James Peng, Nicholas R. Baker, Duane Lee Marzinzik, Matthew Eric Riley, Sr., Nicholas Christopulos, Brian Mark Fields, J. Lynn Wilson, Bryan T. Wilkerson, David W. Thurber
  • Publication number: 20190274706
    Abstract: Various aspects of a generator, ultrasonic device, and method for estimating and controlling a state of an end effector of an ultrasonic device are disclsoed. The ultrasonic device includes an electromechanical ultrasonic system defined by a predetermined resonant frequency, including an ultrasonic transducer coupled to an ultrasonic blade. A control circuit measures a complex impedance of an ultrasonic transducer, wherein the complex impedance is defined as Z g ? ( t ) = V g ? ( t ) I g ? ( t ) . The control circuit receives a complex impedance measurement data point and compares the complex impedance measurement data point to a data point in a reference complex impedance characteristic pattern. The control circuit then classifies the complex impedance measurement data point based on a result of the comparison analysis and assigns a state or condition of the end effector based on the result of the comparison analysis.
    Type: Application
    Filed: September 27, 2018
    Publication date: September 12, 2019
    Inventors: Cameron R. Nott, Foster B. Stulen, Fergus P. Quigley, John E. Brady, Gregory A. Trees, Amrita S. Sawhney, Patrick J. Scoggins, Kristen G. Denzinger, Craig N. Faller, Madeleine C. Jayme, Alexander R. Cuti, Matthew S. Schneider, Chad P. Boudreaux, Brian D. Black, Maxwell T. Rockman, Gregory D. Bishop, Eric M. Roberson, Stephen M. Leuck, James M. Wilson
  • Publication number: 20190256409
    Abstract: Components of an electronic device, such as glass components, are susceptible to surface damage. Glass components can be strengthened by providing ceramic particles at the exposed surface of the glass. Ceramic particles can also provide optical features, such as color, opacity, and haze to enhance the appearance of the resulting composite article. Where ceramic particles are provided at the exposed surface, the ceramic particles can also produce a desired tactile feature. These features can be provided in various combinations and in different ways across different regions to produce a desired look and feel of the resulting composite article.
    Type: Application
    Filed: May 10, 2018
    Publication date: August 22, 2019
    Inventors: James R. WILSON, Matthew S. ROGERS
  • Patent number: 10384810
    Abstract: Micro-emitter arrays and methods of microfabricating such emitter arrays are provided. The microfabricated emitter arrays incorporate a plurality of emitters with heights greater than 280 microns with uniformity of +/?10 microns arranged on a supporting silicon substrate, each emitter comprising an elongated body extending from the top surface of the substrate and incorporating at least one emitter tip on the distal end of the elongated body thereof. The emitters may be disposed on the substrate in an ordered array in an X by Y grid pattern, wherein X and Y can be any number greater than zero. The micro-emitter arrays may utilize a LMIS propellant source including, for example, gallium, indium, bismuth, or tin. The substrate may incorporate at least one through-via providing a fluid pathway for the LMIS propellant to flow from a propellant reservoir beneath the substrate to the top substrate surface whereupon the micro-emitter array is disposed.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: August 20, 2019
    Assignee: California Institute of Technology
    Inventors: Cecile Jung-Kubiak, Colleen M. Marrese-Reading, Victor E. White, Daniel W. Wilson, Matthew R. Dickie, Karl Y. Yee, Richard E. Muller, James E. Polk, John R. Anderson, Nima Rouhi, Frank Greer
  • Patent number: 10373731
    Abstract: A system such as a vehicle system may include a window. The window may have glass layers and an interposed polymer layer. Signal paths that contact the polymer layer may be formed within the window. The signal paths may be electrical signal paths formed from wires or patterned conductive traces. The conductive traces may be portions of an infrared-light-blocking layer formed from a conductive film or may be patterned from other conductive thin-film layers. The signal paths may include optical waveguides formed from optical fibers embedded in the polymer or transparent thin-film layers on the glass layers or other substrates. Openings may be formed in the glass layers to allow signal paths to pass to an electrical component. The electrical component may also be wirelessly coupled to the signal paths.
    Type: Grant
    Filed: July 19, 2017
    Date of Patent: August 6, 2019
    Assignee: Apple Inc.
    Inventors: James R. Wilson, Christopher D. Jones, Gary L. Burkholder, Derek C. Scott, David G. Havskjold, Glen A. Rhodes, Forrest C. Wang, Ryan J. Garrone
  • Publication number: 20190239348
    Abstract: An electronic device may include electrical components and other components mounted within an interior of a housing. The device may have a display on a front face of the device and may have a glass layer that forms part of the housing on a rear face of the device. The glass layer may be provided with regions having different appearances. The regions may be textured, may have coatings such as thin-film interference filter coatings formed from stacks of dielectric material having alternating indices of refraction, may have metal coating layers, and/or may have ink coating layers. Textured surfaces may be formed on thin glass layers and polymer films that are coupled to the glass layer. A glass layer may be formed from a pair of coupled glass layers. The coupled layers may have one or more recesses or other structures to visually distinguish different regions of the glass layer.
    Type: Application
    Filed: April 4, 2019
    Publication date: August 1, 2019
    Inventors: James R. Wilson, Christopher D. Prest, Marta M. Giachino, Matthew S. Rogers, Que Anh S. Nguyen
  • Patent number: 10330016
    Abstract: According to an aspect, a system for a gas turbine engine includes a reduction gear train operable to drive rotation of a starter gear train that interfaces to an accessory gearbox of the gas turbine engine. The reduction gear train includes a starter interface gear that engages the starter gear train, a core-turning clutch operably connected to the starter interface gear, and a plurality of stacked planetary gear systems operably connected to the core-turning clutch and a core-turning input. The system also includes a mounting pad including an interface to couple a core-turning motor to the core-turning input of the reduction gear train.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: June 25, 2019
    Assignee: HAMILTON SUNDSTRAND CORPORATION
    Inventors: Benjamin T. Harder, Matthew Allen Slayter, Brian McMasters, James Vandung Nguyen, Dwayne Leon Wilson, Paul F. Fox, Richard Alan Davis, Richard R. Hergert, Jeffrey Todd Roberts, Jeff A. Brown, Daniel Richard Walker
  • Patent number: 10330832
    Abstract: A cover glass assembly comprises a sheet having a first surface and a second surface below the first surface. The second surface comprises a textured portion. The cover glass assembly also includes a pigment layer below the textured portion, and a mirror layer below the pigment layer. The textured portion diffusely reflects a first portion of light that enters the cover glass assembly through the first surface. The pigment layer diffusely reflects a second portion of the light. The mirror layer reflects, onto the pigment layer, a third portion of the light. The cover glass assembly provides a high-luminance surface. A method of forming the cover glass assembly is also disclosed.
    Type: Grant
    Filed: June 25, 2015
    Date of Patent: June 25, 2019
    Assignee: APPLE INC.
    Inventors: James R. Wilson, Matthew S. Rogers
  • Patent number: 10308958
    Abstract: Adeno-associated virus rh.10 sequences, vectors containing same, and methods of use are provided.
    Type: Grant
    Filed: June 27, 2017
    Date of Patent: June 4, 2019
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Guangping Gao, James M. Wilson, Mauricio R. Alvira
  • Patent number: 10314116
    Abstract: A heating system includes a conductive layer disposed on a pane surface of a glass pane, a first busbar extending along a first pane edge portion of the glass plane in electrical contact with the conductive layer, and a second busbar extending along a second pane edge portion of the glass plane in electrical contact with the conductive layer. Applying power to the first busbar causes current to travel from the first busbar along the conductive layer to the second busbar, heating the pane surface.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: June 4, 2019
    Assignee: Apple Inc.
    Inventors: David E. Kingman, Ibuki Kamei, James R. Wilson, John Raff, Martin Melcher
  • Patent number: 10301650
    Abstract: Sequences of a serotype 8 adeno-associated virus and vectors and host cells containing these sequences are provided. Also described are methods of using such host cells and vectors in production of rAAV particles.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: May 28, 2019
    Assignee: The Trustees of the University of Pennsylvania
    Inventors: Guangping Gao, James M. Wilson, Mauricio R. Alvira
  • Publication number: 20190152164
    Abstract: A processing apparatus such as a heating and/or debulking apparatus that may be used to debulk a plurality of uncured composite layers to form an article such as an aircraft component may include a plurality of interconnected smart susceptor heater blankets. The plurality of smart susceptor heater blankets may be connected in series or in parallel, and may be controlled to uniformly heat the component during formation. The plurality of smart susceptor heater blankets may be supported by a deployment system that lowers the plurality of smart susceptor heater blankets toward, and raises the plurality of smart susceptor heater blankets away from, a working surface.
    Type: Application
    Filed: January 22, 2019
    Publication date: May 23, 2019
    Inventors: Andrew M. Hopkins, Joshua P. Carlsen, Taylor M. Williamson, Jeff D. Eastin, Robert D. Dennis, Thomas D. Wilson, Bianca M. Moran, Kari P. Larkin, John R. Henry, Isaac K. Jacob, James M. Kestner
  • Patent number: 10292286
    Abstract: An electronic device may include electrical components and other components mounted within an interior of a housing. The device may have a display on a front face of the device and may have a glass layer that forms part of the housing on a rear face of the device. The glass layer may be provided with regions having different appearances. The regions may be textured, may have coatings such as thin-film interference filter coatings formed from stacks of dielectric material having alternating indices of refraction, may have metal coating layers, and/or may have ink coating layers. Textured surfaces may be formed on thin glass layers and polymer films that are coupled to the glass layer. A glass layer may be formed from a pair of coupled glass layers. The coupled layers may have one or more recesses or other structures to visually distinguish different regions of the glass layer.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: May 14, 2019
    Assignee: Apple Inc.
    Inventors: James R. Wilson, Christopher D. Prest, Marta M. Giachino, Matthew S. Rogers, Que Anh S. Nguyen
  • Publication number: 20190037690
    Abstract: An electronic device may include electrical components and other components mounted within an interior of a housing. The device may have a display on a front face of the device and may have a glass layer that forms a housing wall on a rear face of the device. The glass housing wall may be provided with regions having different appearances. The regions may be textured, may have coatings such as thin-film interference filter coatings formed from stacks of dielectric material having alternating indices of refraction, may have metal coating layers, and/or may have ink coating layers. Textured surfaces, cavities, coatings, and other decoration may be embedded in glass structures that are joined with chemical bonds at diffusion-bonding interfaces.
    Type: Application
    Filed: April 30, 2018
    Publication date: January 31, 2019
    Inventors: James R. Wilson, Matthew S. Rogers
  • Publication number: 20190037720
    Abstract: An electronic device may include electrical components and other components mounted within an interior of a housing. The device may have a display on a front face of the device and may have a glass layer that forms part of the housing on a rear face of the device. The glass layer may be provided with regions having different appearances. The regions may be textured, may have coatings such as thin-film interference filter coatings formed from stacks of dielectric material having alternating indices of refraction, may have metal coating layers, and/or may have ink coating layers. Textured surfaces may be formed on thin glass layers and polymer films that are coupled to the glass layer. A glass layer may be formed from a pair of coupled glass layers. The coupled layers may have one or more recesses or other structures to visually distinguish different regions of the glass layer.
    Type: Application
    Filed: December 13, 2017
    Publication date: January 31, 2019
    Inventors: James R. Wilson, Christopher D. Prest, Marta M. Giachino, Matthew S. Rogers, Que Anh S. Nguyen
  • Publication number: 20180373085
    Abstract: Substrates such as transparent glass layers or other transparent substrates may be used to form protective display cover layers, windows, housing structures, camera windows, and other structures. Coatings may be formed on the substrates, on pixel arrays such as flexible organic light-emitting diode pixel arrays, housing structures, and other structures. The coatings may have optical properties arising from the inclusion of pigment flakes in a clear polymer binder. The pigment flakes may be formed from a thin-film interference layer. The thin-film interference filter layer may have a stack of dielectric layers with a pattern of refractive index values selected to adjust the optical properties of the pigment flakes. The stack of dielectric layers may be configured to form an infrared-light-blocking-and-visible-light-transmitting optical characteristic for the coatings and/or may have other desired spectral properties.
    Type: Application
    Filed: March 5, 2018
    Publication date: December 27, 2018
    Inventors: James R. Wilson, Matthew S. Rogers