Patents by Inventor James Rand

James Rand has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7456084
    Abstract: There is provided a method of fabricating a wafer, comprising depositing semiconductor material into a recess in a setter, moving the setter through a heating/cooling region to subject the semiconductor material to a temperature profile, and removing a wafer from the recess. The size and shape of the wafer are substantially equal to the size of the wafer when it is used. As a result, the wafer can be fabricated in any desired shape and with any of a variety of surface structural features and/or internal structural features. The temperature profile can be closely controlled, enabling production of wafers having structural features not previously obtainable. There are also provided wafers formed by such methods and setters for use in such methods.
    Type: Grant
    Filed: January 28, 2005
    Date of Patent: November 25, 2008
    Assignee: Heritage Power LLC
    Inventors: Ralf Jonczyk, Scott L. Kendall, James A. Rand
  • Publication number: 20080224581
    Abstract: A cabinet liner for a vanity or kitchen cabinet or any other similar cabinetry located in these areas. The cabinet liner comprises of a tapered wall around its entire perimeter and a lip with grooves that can be trimmed or flexed along the sides and back. The cabinet liner consists' of a liquid impervious, flexible and shape retaining, rubberized plastic. The cabinet liner is molded of a simple one piece design that can be contorted to fit through a door of any existing bathroom and kitchen base or wall cabinets. The cabinet liner can be manipulated into place an covers the entire inside floor of said cabinets forming a tray for receiving goods and protecting cabinet from small plumbing leaks and spills from goods stored thereon until realized.
    Type: Application
    Filed: March 13, 2008
    Publication date: September 18, 2008
    Inventor: James Rand Minerva
  • Publication number: 20070034251
    Abstract: There is provided a structure comprising semiconductor material, the structure having at least one zone of reduced oxygen concentration, such zone having an interstitial oxygen concentration of not greater than 3×1017 oxygen atoms/cm3, such zone extending at least 75 microns in depth from a first major surface. There is further provided a photovoltaic cell comprising at least one such structure.
    Type: Application
    Filed: July 26, 2004
    Publication date: February 15, 2007
    Applicant: GE Energy (USA) LLC
    Inventors: Ralf Jonczyk, Scott Kendall, James Rand
  • Publication number: 20060048698
    Abstract: There are provided methods of purifying a material, comprising melting solid material to form liquefied material, directionally solidifying a portion of the liquefied material; and removing a liquid remainder from the purified solidified material. Preferably, the purified solidified material is melted to form re-liquefied purified material, and re-liquefied purified material is removed. Preferably, the material is positioned in a container as it is being purified. The method is particularly useful for purifying elemental material, e.g., semiconductor material such as silicon and/or germanium, such as recycle scrap silicon and/or metallurgical grade silicon. There are also provided systems for carrying out such methods.
    Type: Application
    Filed: September 26, 2003
    Publication date: March 9, 2006
    Applicant: GE ENERGY (USA) LLC
    Inventors: Robert Hall, Scott Kendall, James Rand, Paul Sims
  • Publication number: 20050176218
    Abstract: There is provided a method of fabricating a wafer, comprising depositing semiconductor material into a recess in a setter, moving the setter through a heating/cooling region to subject the semiconductor material to a temperature profile, and removing a wafer from the recess. The size and shape of the wafer are substantially equal to the size of the wafer when it is used. As a result, the wafer can be fabricated in any desired shape and with any of a variety of surface structural features and/or internal structural features. The temperature profile can be closely controlled, enabling production of wafers having structural features not previously obtainable. There are also provided wafers formed by such methods and setters for use in such methods.
    Type: Application
    Filed: January 28, 2005
    Publication date: August 11, 2005
    Applicant: GE ENERGY (USA) LLC
    Inventors: Ralf Jonczyk, Scott Kendall, James Rand
  • Publication number: 20040199622
    Abstract: In an embodiment, a method of centrally controlling the settings in a computer system in an eRoom environment, includes: providing an interface page by use of an operations console module; and adjusting settings relating to an eRoom application by setting at least one variable in the interface page. The interface page may be related to look and feel settings, server settings, and/or security settings.
    Type: Application
    Filed: April 7, 2003
    Publication date: October 7, 2004
    Inventors: Anthony Alan Huscher, Kevin Donald Keller, Troy Charles Whitlow, Christopher James Rand
  • Patent number: 6420643
    Abstract: A polycrystalline film of silicon including silicon grains having an aspect ratio, d/t, of more than 1:1, wherein “d” is the grain diameter and “t” is the grain thickness. The polycrystalline film of silicon can be used to form an electronic device, such as a monolithically integrated solar cell having ohmic contacts formed on opposed surfaces or on the same surface of the film. A plurality of solar cells can be monolithically integrated to provide a solar cell module that includes an electrically insulating substrate and at least two solar cells disposed on the substrate in physical isolation from one another. Methods for manufacturing the film, solar cell and solar cell module are also disclosed. The simplified structure and method allow for substantial cost reduction on a mass-production scale, at least in part due to the high aspect ratio silicon grains in the film.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: July 16, 2002
    Assignee: AstroPower, Inc.
    Inventors: David H. Ford, Allen M. Barnett, Robert B. Hall, James A. Rand
  • Patent number: 6362021
    Abstract: A polycrystalline film of silicon including silicon grains having an aspect ratio, d/t, of more than 1:1, wherein “d” is the grain diameter and “t” is the grain thickness. The polycrystalline film of silicon can be used to form an electronic device, such as a monolithically integrated solar cell having ohmic contacts formed on opposed surfaces or on the same surface of the film. A plurality of solar cells can be monolithically integrated to provide a solar cell module that includes an electrically insulating substrate and at least two solar cells disposed on the substrate in physical isolation from one another. Methods for manufacturing the film, solar cell and solar cell module are also disclosed. The simplified structure and method allow for substantial cost reduction on a mass-production scale, at least in part due to the high aspect ratio silicon grains in the film.
    Type: Grant
    Filed: February 2, 2001
    Date of Patent: March 26, 2002
    Assignee: AstroPower, Inc.
    Inventors: David H. Ford, Allen M. Barnett, Robert B. Hall, James A. Rand
  • Publication number: 20010020485
    Abstract: A polycrystalline film of silicon including silicon grains having an aspect ratio, d/t, of more than 1:1, wherein “d” is the grain diameter and “t” is the grain thickness. The polycrystalline film of silicon can be used to form an electronic device, such as a monolithically integrated solar cell having ohmic contacts formed on opposed surfaces or on the same surface of the film. A plurality of solar cells can be monolithically integrated to provide a solar cell module that includes an electrically insulating substrate and at least two solar cells disposed on the substrate in physical isolation from one another. Methods for manufacturing the film, solar cell and solar cell module are also disclosed. The simplified structure and method allow for substantial cost reduction on a mass-production scale, at least in part due to the high aspect ratio silicon grains in the film.
    Type: Application
    Filed: February 2, 2001
    Publication date: September 13, 2001
    Applicant: AstroPower
    Inventors: David H. Ford, Allen M. Barnett, Robert B. Hall, James A. Rand
  • Publication number: 20010011554
    Abstract: A polycrystalline film of silicon including silicon grains having an aspect ratio, d/t, of more than 1:1, wherein “d” is the grain diameter and “t” is the grain thickness. The polycrystalline film of silicon can be used to form an electronic device, such as a monolithically integrated solar cell having ohmic contacts formed on opposed surfaces or on the same surface of the film. A plurality of solar cells can be monolithically integrated to provide a solar cell module that includes an electrically insulating substrate and at least two solar cells disposed on the substrate in physical isolation from one another. Methods for manufacturing the film, solar cell and solar cell module are also disclosed. The simplified structure and method allow for substantial cost reduction on a mass-production scale, at least in part due to the high aspect ratio silicon grains in the film.
    Type: Application
    Filed: February 2, 2001
    Publication date: August 9, 2001
    Applicant: AstroPower
    Inventors: David H. Ford, Allen M. Barnett, Robert B. Hall, James A. Rand
  • Patent number: 6211455
    Abstract: A polycrystalline film of silicon including silicon grains having an aspect ratio, d/t, of more than 1:1, wherein “d” is the grain diameter and “t” is the grain thickness. The polycrystalline film of silicon can be used to form an electronic device, such as a monolithically integrated solar cell having ohmic contacts formed on opposed surfaces or on the same surface of the film. A plurality of solar cells can be monolithically integrated to provide a solar cell module that includes an electrically insulating substrate and at least two solar cells disposed on the substrate in physical isolation from one another. Methods for manufacturing the film, solar cell and solar cell module are also disclosed. The simplified structure and method allow for substantial cost reduction on a mass-production scale, at least in part due to the high aspect ratio silicon grains in the film.
    Type: Grant
    Filed: July 1, 1999
    Date of Patent: April 3, 2001
    Assignee: Astropower
    Inventors: David H. Ford, Allen M. Barnett, Robert B. Hall, James A. Rand
  • Patent number: 6207891
    Abstract: The invention relates to a silicon sheet having columnar grains extending axially through the sheet from one free surface of the sheet to the other free surface. The sheet has an electrical resistivity in the range of 0.1 to 10 ohm-cm.
    Type: Grant
    Filed: February 1, 2000
    Date of Patent: March 27, 2001
    Assignee: Astropower, Inc.
    Inventors: Robert B. Hall, Allen M. Barnett, Joseph C. Checchi, David H. Ford, Christopher L. Kendall, James A Rand
  • Patent number: 6111191
    Abstract: The invention relates to improved techniques for manufacturing columnar-grained polycrystalline sheets which have particular utility as substrates or wafers for solar cells. The sheet is made from silicon on a setter material which supports the silicon material. The setter material and silicon are subjected to a thermal profile all of which promote columnar growth. The thermal profile sequentially creates a melt region where a thin-film capping layer grows at the top of the silicon, a nucleation region where preferential nucleation occurs at the capping-layer/molten-silicon interface, and then a growth region where both liquid and a growing polycrystalline sheet layer coexist. An annealing region is created where the temperature of the grown polycrystalline silicon sheet layer is controllably reduced to effect stress relief.
    Type: Grant
    Filed: March 2, 1998
    Date of Patent: August 29, 2000
    Assignee: AstroPower, Inc.
    Inventors: Robert B. Hall, Allen M. Barnett, Sandra R. Collins, Joseph C. Checchi, David H. Ford, Christopher L. Kendall, James A Rand, Chad B. Moore
  • Patent number: 5960414
    Abstract: An excess inventory system monitors excess material. In the system, requirements are determined for each component part over a predetermined period (e.g., 6 months) from material requirements planning (MRP) data. When forecasting for the component part is to be determined using an MRP planning method, the MRP data is used to determine a number of excess component parts. The number of excess components is then recorded in a record for the component part within an excess inventory table. When forecasting for the component part is to be determined using an alternate planning method which is alternate to MRP, the alternate planning method is used to determine a number of excess component parts. The number of excess components and a notation indicating the alternate planning method used are then recorded in the record for the component part within the excess inventory table.
    Type: Grant
    Filed: November 25, 1997
    Date of Patent: September 28, 1999
    Assignee: Hewlett-Packard Company
    Inventors: Christopher James Rand, Karla Jane Peterson
  • Patent number: 5496416
    Abstract: The invention relates to techniques for manufacturing columnar-grained polycrystalline sheets which have particular utility as substrates or wafers for solar cells. The sheet is made by applying granular silicon to a setter material which supports the granular material. The setter material and granular silicon are subjected to a thermal profile all of which promote columnar growth by melting the silicon from the top downwardly. The thermal profile sequentially creates a melt region at the top of the granular silicon and then a growth region where both liquid and a growing polycrystalline sheet layer coexist. An annealing region is created where the temperature of the grown polycrystalline silicon sheet layer is controllably reduced to effect stress relief.
    Type: Grant
    Filed: August 5, 1994
    Date of Patent: March 5, 1996
    Assignee: Astropower, Inc.
    Inventors: Robert B. Hall, Allen M. Barnett, Sandra R. Collins, Joseph C. Checchi, David H. Ford, Christopher L. Kendall, Steven M. Lampo, James A. Rand
  • Patent number: 5336335
    Abstract: The invention relates to techniques for manufacturing columnar-grained polycrystalline sheets which have particular utility as substrates or wafers for solar cells. The sheet is made by applying granular silicon to a setter material which supports the granular material. The setter material and granular silicon are subjected to a thermal profile all of which promote columnar growth by melting the silicon from the top downwardly. The thermal profile sequentially creates a melt region at the top of the granular silicon and then a growth region where both liquid and a growing polycrystalline sheet layer coexist. An annealing region is created where the temperature of the grown polycrystalline silicon sheet layer is controllably reduced to effect stress relief.
    Type: Grant
    Filed: October 9, 1992
    Date of Patent: August 9, 1994
    Assignee: AstroPower, Inc.
    Inventors: Robert B. Hall, Allen M. Barnett, Jacob E. Brown, Joseph C. Checchi, David H. Ford, Christopher L. Kendall, William P. Mulligan, James A. Rand, Todd R. Ruffins
  • Patent number: 5314489
    Abstract: A hip prosthesis is disclosed which employs a number of cement spacers located on the surface of the stem of the prosthesis immediately below a collar which makes direct and parallel contact with calcar bone when a stem of the prosthesis is seated in medullary canal of the patient. The collar is constructed to provide even stress distribution to the bone.
    Type: Grant
    Filed: November 6, 1992
    Date of Patent: May 24, 1994
    Assignee: Johnson & Johnson Orthopaedics, Inc.
    Inventors: William H. Hoffman, Richard D. Scott, James A. Rand
  • Patent number: 5266125
    Abstract: A plurality of thin polycrystalline silicon solar cells formed on a ceramic substrate and which are electrically series connected to form a monolithically interconnected submodule. Adjacent solar cells are electrically separated by a vertical trench and electrically connected by interconnects located below the light receiving surface of each solar cell. The submodules are provided with external electrical contacts for electrically connecting into a photovoltaic module assembly.
    Type: Grant
    Filed: May 12, 1992
    Date of Patent: November 30, 1993
    Assignee: AstroPower, Inc.
    Inventors: James A. Rand, Allen M. Barnett, Robert B. Hall
  • Patent number: 5057163
    Abstract: A thin-film photovoltaic solar cell features a thin polycrystalline silicon active semiconductor formed over a conductive ceramic substrate. Between the substrate and the adjacent active semiconductor layer is a barrier layer which provides for reflection of light, minimizes back surface recombination and prevents contamination of the active semiconductor.
    Type: Grant
    Filed: May 4, 1988
    Date of Patent: October 15, 1991
    Assignee: AstroPower, Inc.
    Inventors: Allen M. Barnett, Robert B. Hall, James A. Rand, David H. Ford
  • Patent number: RE36156
    Abstract: The invention relates to techniques for manufacturing columnar-grained polycrystalline sheets which have particular utility as substrates or wafers for solar cells. The sheet is made by applying granular silicon to a setter material which supports the granular material. The setter material and granular silicon are subjected to a thermal profile all of which promote columnar growth by melting the silicon from the top downwardly. The thermal profile sequentially creates a melt region at the top of the granular silicon and then a growth region where both liquid and a growing polycrystalline sheet layer coexist. An annealing region is created where the temperature of the grown polycrystalline silicon sheet layer is controllably reduced to effect stress relief.
    Type: Grant
    Filed: January 24, 1997
    Date of Patent: March 23, 1999
    Assignee: Astropower, Inc.
    Inventors: Robert B. Hall, Allen M. Barnett, Sandra R. Collins, Joseph C. Checchi, David H. Ford, Christopher L. Kendall, Steven M. Lampo, James A. Rand