Patents by Inventor James S. Speck

James S. Speck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110032965
    Abstract: Optical gain of a nonpolar or semipolar Group-III nitride diode laser is controlled by orienting an axis of light propagation in relation to an optical polarization direction or crystallographic orientation of the diode laser. The axis of light propagation is substantially perpendicular to the mirror facets of the diode laser, and the optical polarization direction is determined by the crystallographic orientation of the diode laser. To maximize optical gain, the axis of light propagation is oriented substantially perpendicular to the optical polarization direction or crystallographic orientation.
    Type: Application
    Filed: October 20, 2010
    Publication date: February 10, 2011
    Applicants: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, JAPAN SCIENCE AND TECHNOLOGY AGENCY
    Inventors: Robert M. Farrell, Mathew C. Schmidt, Kwang Choong Kim, Hisashi Masui, Daniel F. Feezell, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20110031891
    Abstract: Disclosed is an improved light-emitting device for an AC power operation. A conventional light emitting device employs an AC light-emitting diode having arrays of light emitting cells connected in reverse parallel. The arrays in the prior art alternately repeat on/off in response to a phase change of an AC power source, resulting in short light emission time during a ½ cycle and the occurrence of a flicker effect. An AC light-emitting device according to the present invention employs a variety of means by which light emission time is prolonged during a ½ cycle in response to a phase change of an AC power source and a flicker effect can be reduced. For example, the means may be switching blocks respectively connected to nodes between the light emitting cells, switching blocks connected to a plurality of arrays, or a delay phosphor.
    Type: Application
    Filed: October 20, 2010
    Publication date: February 10, 2011
    Applicant: SEOUL OPTO DEVICE CO., LTD.
    Inventors: Chung Hoon LEE, James S. SPECK, Hong San KIM, Jae Jo KIM, Sung Han KIM, Jae Ho LEE
  • Patent number: 7880183
    Abstract: Disclosed is a light emitting device having a plurality of light emitting cells. The light emitting device comprises a thermally conductive substrate, such as a SiC substrate, having a thermal conductivity higher than that of a sapphire substrate. The plurality of light emitting cells are connected in series on the thermally conductive substrate. Meanwhile, a semi-insulating buffer layer is interposed between the thermally conductive substrate and the light emitting cells. For example, the semi-insulating buffer layer may be formed of AlN or semi-insulating GaN. Since the thermally conductive substrate having a thermal conductivity higher than that of a sapphire substrate is employed, heat-dissipating performance can be enhanced as compared with a conventional sapphire substrate, thereby increasing the maximum light output of a light emitting device that is driven under a high voltage AC power source.
    Type: Grant
    Filed: May 5, 2010
    Date of Patent: February 1, 2011
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Chung Hoon Lee, Hong San Kim, James S. Speck
  • Publication number: 20110012234
    Abstract: A method of fabricating an optoelectronic device, comprising growing an active layer of the device on an oblique surface of a suitable material, wherein the oblique surface comprises a facetted surface. The present invention also discloses a method of fabricating the facetted surfaces. One fabrication process comprises growing an epitaxial layer on a suitable material, etching the epitaxial layer through a mask to form the facets having a specific crystal orientation, and depositing one or more active layers on the facets. Another method comprises growing a layer of material using a lateral overgrowth technique to produce a facetted surface, and depositing one or more active layers on the facetted surfaces. The facetted surfaces are typically semipolar planes.
    Type: Application
    Filed: September 24, 2010
    Publication date: January 20, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Hong Zhong, John F. Kaeding, Rajat Sharma, James S. Speck, Steven P. DenBaars, Shuji Nakamua
  • Publication number: 20110007766
    Abstract: A structure for improving the mirror facet cleaving yield of (Ga,Al,In,B)N laser diodes grown on nonpolar or semipolar (Ga,Al,In,B)N substrates. The structure comprises a nonpolar or semipolar (Ga,Al,In,B)N laser diode including a waveguide core that provides sufficient optical confinement for the device's operation in the absence of p-type doped aluminum-containing waveguide cladding layers, and one of more n-type doped aluminum-containing layers that can be used to assist with facet cleaving along a particular crystallographic plane.
    Type: Application
    Filed: July 9, 2010
    Publication date: January 13, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Robert M. Farrell, Matthew T. Hardy, Hiroaki Ohta, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Patent number: 7858996
    Abstract: A method of fabricating an optoelectronic device, comprising growing an active layer of the device on an oblique surface of a suitable material, wherein the oblique surface comprises a facetted surface. The present invention also discloses a method of fabricating the facetted surfaces. One fabrication process comprises growing an epitaxial layer on a suitable material, etching the epitaxial layer through a mask to form the facets having a specific crystal orientation, and depositing one or more active layers on the facets. Another method comprises growing a layer of material using a lateral overgrowth technique to produce a facetted surface, and depositing one or more active layers on the facetted surfaces. The facetted surfaces are typically semipolar planes.
    Type: Grant
    Filed: February 20, 2007
    Date of Patent: December 28, 2010
    Assignee: The Regents of the University of California
    Inventors: Hong Zhong, John F. Kaeding, Rajat Sharma, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20100320475
    Abstract: An etching technique for the fabrication of thin (Al, In, Ga)N layers. A suitable template or substrate is selected and implanted with foreign ions over a desired area to create ion implanted material. A regrowth of a device structure is then performed on the implanted template or substrate. The top growth surface of the template is bonded to a carrier wafer to created a bonded template/carrier wafer structure. The substrate is removed, as is any residual material, to expose the ion implanted material. The ion implanted material on the bonded template/carrier wafer structure is then exposed to a suitable etchant for a sufficient time to remove the ion implanted material.
    Type: Application
    Filed: September 1, 2010
    Publication date: December 23, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: James S. Speck, Benjamin A. Haskell, P. Morgan Pattison, Troy J. Baker
  • Patent number: 7846757
    Abstract: A method for growth and fabrication of semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices, comprising identifying desired material properties for a particular device application, selecting a semipolar growth orientation based on the desired material properties, selecting a suitable substrate for growth of the selected semipolar growth orientation, growing a planar semipolar (Ga,Al,In,B)N template or nucleation layer on the substrate, and growing the semipolar (Ga,Al,In,B)N thin films, heterostructures or devices on the planar semipolar (Ga,Al,In,B)N template or nucleation layer. The method results in a large area of the semipolar (Ga,Al,In,B)N thin films, heterostructures, and devices being parallel to the substrate surface.
    Type: Grant
    Filed: June 1, 2006
    Date of Patent: December 7, 2010
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Robert M. Farrell, Jr., Troy J. Baker, Arpan Chakraborty, Benjamin A. Haskell, P. Morgan Pattison, Rajat Sharma, Umesh Kumar Mishra, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Patent number: 7847293
    Abstract: Lateral epitaxial overgrowth (LEO) of non-polar gallium nitride (GaN) films results in significantly reduced defect density.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: December 7, 2010
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Benjamin A. Haskell, Michael D. Craven, Paul T. Fini, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Patent number: 7842527
    Abstract: A method of device growth and p-contact processing that produces improved performance for non-polar III-nitride light emitting diodes and laser diodes. Key components using a low defect density substrate or template, thick quantum wells, a low temperature p-type III-nitride growth technique, and a transparent conducting oxide for the electrodes.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: November 30, 2010
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Mathew C. Schmidt, Kwang-Choong Kim, Hitoshi Sato, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Publication number: 20100295081
    Abstract: A single or multi-color light emitting diode (LED) with high extraction efficiency is comprised of a substrate, a buffer layer formed on the substrate, one or more patterned layers deposited on top of the buffer layer, and one or more active layers formed on or between the patterned layers, for example by Lateral Epitaxial Overgrowth (LEO), and including one or more light emitting species, such as quantum wells. The patterned layers include a patterned, perforated or pierced mask made of insulating, semiconducting or metallic material, and materials filling holes in the mask. The patterned layer acts as an optical confining layer due to a contrast of a refractive index with the active layer and/or as a buried diffraction grating due to variation of a refractive index between the mask and the material filling the holes in the mask.
    Type: Application
    Filed: June 4, 2010
    Publication date: November 25, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Claude C. A. Weisbuch, Aurelien J. F. David, James S. Speck, Steven P. DenBaars
  • Patent number: 7839903
    Abstract: Optical gain of a nonpolar or semipolar Group-III nitride diode laser is controlled by orienting an axis of light propagation in relation to an optical polarization direction or crystallographic orientation of the diode laser. The axis of light propagation is substantially perpendicular to the mirror facets of the diode laser, and the optical polarization direction is determined by the crystallographic orientation of the diode laser. To maximize optical gain, the axis of light propagation is oriented substantially perpendicular to the optical polarization direction or crystallographic orientation.
    Type: Grant
    Filed: February 12, 2008
    Date of Patent: November 23, 2010
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: Robert M. Farrell, Mathew C. Schmidt, Kwang-Choong Kim, Hisashi Masui, Daniel F. Feezell, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20100283078
    Abstract: An (Al, Ga, In)N light emitting diode (LED) in which multi-directional light can be extracted from one or more surfaces of the LED before entering a shaped optical element and subsequently being extracted to air. In particular, the (Al, Ga, In)N and transparent contact layers (such as ITO or ZnO) are embedded in or combined with a shaped optical element, which may be an epoxy, glass, silicon or other material molded into a sphere or inverted cone shape, wherein most of the light entering the inverted cone shape lies within a critical angle and is extracted. The present invention also minimizes internal reflections within the LED by eliminating mirrors and/or mirrored surfaces, in order to minimize re-absorption of the LED's light by the emitting layer (or the active layer) of the LED. To assist in minimizing internal reflections, transparent electrodes, such as ITO or ZnO, may be used. Surface roughening by patterning or anisotropically etching (i.e.
    Type: Application
    Filed: July 14, 2010
    Publication date: November 11, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Steven P. DenBaars, Shuji Nakamura, James S. Speck
  • Publication number: 20100277084
    Abstract: Disclosed is an improved light-emitting device for an AC power operation. A conventional light emitting device employs an AC light-emitting diode having arrays of light emitting cells connected in reverse parallel. The arrays in the prior art alternately repeat on/off in response to a phase change of an AC power source, resulting in short light emission time during a ½ cycle and the occurrence of a flicker effect. An AC light-emitting device according to the present invention employs a variety of means by which light emission time is prolonged during a ½ cycle in response to a phase change of an AC power source and a flicker effect can be reduced. For example, the means may be switching blocks respectively connected to nodes between the light emitting cells, switching blocks connected to a plurality of arrays, or a delay phosphor.
    Type: Application
    Filed: July 16, 2010
    Publication date: November 4, 2010
    Applicant: Seoul Opto Device Co., Ltd.
    Inventors: Chung Hoon LEE, James S. Speck, Hong San Kim, Jae Jo Kim, Sung Han Kim, Jae Ho Lee
  • Publication number: 20100264461
    Abstract: A novel enhancement mode field effect transistor (FET), such as a High Electron Mobility Transistors (HEMT), has an N-polar surface uses polarization fields to reduce the electron population under the gate in the N-polar orientation, has improved dispersion suppression, and low gate leakage.
    Type: Application
    Filed: September 18, 2006
    Publication date: October 21, 2010
    Inventors: Siddharth Rajan, Chang Soo Suh, James S. Speck, Umesh K. Mishra
  • Patent number: 7795146
    Abstract: An etching technique for the fabrication of thin (Al, In, Ga)N layers. A suitable template or substrate is selected and implanted with foreign ions over a desired area to create ion implanted material. A regrowth of a device structure is then performed on the implanted template or substrate. The top growth surface of the template is bonded to a carrier wafer to created a bonded template/carrier wafer structure. The substrate is removed, as is any residual material, to expose the ion implanted material. The ion implanted material on the bonded template/carrier wafer structure is then exposed to a suitable etchant for a sufficient time to remove the ion implanted material.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: September 14, 2010
    Assignees: The Regents of the University of California, Japan Science and Technology Agency
    Inventors: James S. Speck, Benjamin A. Haskell, P. Morgan Pattison, Troy J. Baker
  • Publication number: 20100219416
    Abstract: A method for improving the growth morphology of (Ga,Al,In,B)N thin films on nonpolar or semipolar (Ga,Al,In,B)N substrates, wherein a (Ga,Al,In,B)N thin film is grown directly on a nonpolar or semipolar (Ga,Al,In,B)N substrate or template and a portion of the carrier gas used during growth is comprised of an inert gas. Nonpolar or semipolar nitride LEDs and diode lasers may be grown on the smooth (Ga,Al,In,B)N thin films grown by the present invention.
    Type: Application
    Filed: March 2, 2010
    Publication date: September 2, 2010
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Robert M. Farrell, Michael Iza, James S. Speck, Steven P. DenBaars, Shuji Nakamura
  • Publication number: 20100213468
    Abstract: Disclosed is a light emitting device having a plurality of light emitting cells. The light emitting device comprises a thermally conductive substrate, such as a SiC substrate, having a thermal conductivity higher than that of a sapphire substrate. The plurality of light emitting cells are connected in series on the thermally conductive substrate. Meanwhile, a semi-insulating buffer layer is interposed between the thermally conductive substrate and the light emitting cells. For example, the semi-insulating buffer layer may be formed of AlN or semi-insulating GaN. Since the thermally conductive substrate having a thermal conductivity higher than that of a sapphire substrate is employed, heat-dissipating performance can be enhanced as compared with a conventional sapphire substrate, thereby increasing the maximum light output of a light emitting device that is driven under a high voltage AC power source.
    Type: Application
    Filed: May 5, 2010
    Publication date: August 26, 2010
    Applicant: Seoul Opto Device Co., Ltd.
    Inventors: Chung Hoon Lee, Hong San Kim, James S. Speck
  • Patent number: 7781789
    Abstract: An (Al, Ga, In)N light emitting diode (LED) in which multi-directional light can be extracted from one or more surfaces of the LED before entering a shaped optical element and subsequently being extracted to air. In particular, the (Al, Ga, In)N and transparent contact layers (such as ITO or ZnO) are embedded in or combined with a shaped optical element, which may be an epoxy, glass, silicon or other material molded into a sphere or inverted cone shape, wherein most of the light entering the inverted cone shape lies within a critical angle and is extracted. The present invention also minimizes internal reflections within the LED by eliminating mirrors and/or mirrored surfaces, in order to minimize re-absorption of the LED's light by the emitting layer (or the active layer) of the LED. To assist in minimizing internal reflections, transparent electrodes, such as ITO or ZnO, may be used. Surface roughening by patterning or anisotropically etching (i.e.
    Type: Grant
    Filed: November 15, 2007
    Date of Patent: August 24, 2010
    Assignee: The Regents of the University of California
    Inventors: Steven P. DenBaars, Shuji Nakamura, James S. Speck
  • Patent number: 7772601
    Abstract: Disclosed is a light emitting device having a plurality of light emitting cells. The light emitting device comprises a thermally conductive substrate, such as a SiC substrate, having a thermal conductivity higher than that of a sapphire substrate. The plurality of light emitting cells are connected in series on the thermally conductive substrate. Meanwhile, a semi-insulating buffer layer is interposed between the thermally conductive substrate and the light emitting cells. For example, the semi-insulating buffer layer may be formed of AlN or semi-insulating GaN. Since the thermally conductive substrate having a thermal conductivity higher than that of a sapphire substrate is employed, heat-dissipating performance can be enhanced as compared with a conventional sapphire substrate, thereby increasing the maximum light output of a light emitting device that is driven under a high voltage AC power source.
    Type: Grant
    Filed: July 5, 2005
    Date of Patent: August 10, 2010
    Assignee: Seoul Opto Device Co., Ltd.
    Inventors: Chung Hoon Lee, Hong San Kim, James S. Speck