Patents by Inventor James Wey

James Wey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11632507
    Abstract: When imaging bright objects, a conventional detector array can saturate, making it difficult to produce an image with a dynamic range that equals the scene's dynamic range. Conversely, a digital focal plane array (DFPA) with one or more m-bit counters can produce an image whose dynamic range is greater than the native dynamic range. In one example, the DFPA acquires a first image over a relatively brief integration period at a relatively low gain setting. The DFPA then acquires a second image over longer integration period and/or a higher gain setting. During this second integration period, counters may roll over, possibly several times, to capture a residue modulus 2m of the number of counts (as opposed to the actual number of counts). A processor in or coupled to the DFPA generates a high-dynamic range image based on the first image and the residues modulus 2m.
    Type: Grant
    Filed: January 18, 2022
    Date of Patent: April 18, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Michael W. Kelly, Megan H. Blackwell, Curtis Colonero, James Wey, Christopher David, Justin Baker, Joseph Costa
  • Publication number: 20220232181
    Abstract: When imaging bright objects, a conventional detector array can saturate, making it difficult to produce an image with a dynamic range that equals the scene's dynamic range. Conversely, a digital focal plane array (DFPA) with one or more m-bit counters can produce an image whose dynamic range is greater than the native dynamic range. In one example, the DFPA acquires a first image over a relatively brief integration period at a relatively low gain setting. The DFPA then acquires a second image over longer integration period and/or a higher gain setting. During this second integration period, counters may roll over, possibly several times, to capture a residue modulus 2?? of the number of counts (as opposed to the actual number of counts). A processor in or coupled to the DFPA generates a high-dynamic range image based on the first image and the residues modulus 2??.
    Type: Application
    Filed: January 18, 2022
    Publication date: July 21, 2022
    Applicant: Massachusetts Institute of Technology
    Inventors: Michael W. KELLY, Megan H. BLACKWELL, Curtis COLONERO, James WEY, Christopher DAVID, Justin BAKER, Joseph COSTA
  • Patent number: 11252351
    Abstract: When imaging bright objects, a conventional detector array can saturate, making it difficult to produce an image with a dynamic range that equals the scene's dynamic range. Conversely, a digital focal plane array (DFPA) with one or more m-bit counters can produce an image whose dynamic range is greater than the native dynamic range. In one example, the DFPA acquires a first image over a relatively brief integration period at a relatively low gain setting. The DFPA then acquires a second image over longer integration period and/or a higher gain setting. During this second integration period, counters may roll over, possibly several times, to capture a residue modulus 2m of the number of counts (as opposed to the actual number of counts). A processor in or coupled to the DFPA generates a high-dynamic range image based on the first image and the residues modulus 2m.
    Type: Grant
    Filed: June 10, 2020
    Date of Patent: February 15, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Michael W. Kelly, Megan H. Blackwell, Curtis Colonero, James Wey, Christopher David, Justin Baker, Joseph Costa
  • Patent number: 10893226
    Abstract: A digital focal plane array includes an all-digital readout integrated circuit in combination with a detector array. The readout circuit includes unit cell electronics, orthogonal transfer structures, and data handling structures. The unit cell electronics include an analog to digital converter. Orthogonal transfer structures enable the orthogonal transfer of data among the unit cells. Data handling structures may be configured to operate the digital focal plane array as a data encryptor/decipherer. Data encrypted and deciphered by the digital focal plane array need not be image data.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: January 12, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Michael W. Kelly, Brian Tyrrell, Curtis Colonero, Robert Berger, Kenneth Schultz, James Wey, Daniel Mooney, Lawrence M Candell
  • Publication number: 20200351459
    Abstract: When imaging bright objects, a conventional detector array can saturate, making it difficult to produce an image with a dynamic range that equals the scene's dynamic range. Conversely, a digital focal plane array (DFPA) with one or more m-bit counters can produce an image whose dynamic range is greater than the native dynamic range. In one example, the DFPA acquires a first image over a relatively brief integration period at a relatively low gain setting. The DFPA then acquires a second image over longer integration period and/or a higher gain setting. During this second integration period, counters may roll over, possibly several times, to capture a residue modulus 2m of the number of counts (as opposed to the actual number of counts). A processor in or coupled to the DFPA generates a high-dynamic range image based on the first image and the residues modulus 2m.
    Type: Application
    Filed: June 10, 2020
    Publication date: November 5, 2020
    Inventors: Michael W. KELLY, Megan H. BLACKWELL, Curtis COLONERO, James WEY, Christopher DAVID, Justin BAKER, Joseph COSTA
  • Patent number: 10694122
    Abstract: When imaging bright objects, a conventional detector array can saturate, making it difficult to produce an image with a dynamic range that equals the scene's dynamic range. Conversely, a digital focal plane array (DFPA) with one or more m-bit counters can produce an image whose dynamic range is greater than the native dynamic range. In one example, the DFPA acquires a first image over a relatively brief integration period at a relatively low gain setting. The DFPA then acquires a second image over longer integration period and/or a higher gain setting. During this second integration period, counters may roll over, possibly several times, to capture a residue modulus 2m of the number of counts (as opposed to the actual number of counts). A processor in or coupled to the DFPA generates a high-dynamic range image based on the first image and the residues modulus 2m.
    Type: Grant
    Filed: August 14, 2018
    Date of Patent: June 23, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Michael W. Kelly, Megan H. Blackwell, Curtis B. Colonero, James Wey, Christopher David, Justin Baker, Joseph Costa
  • Publication number: 20200145598
    Abstract: A digital focal plane array includes an all-digital readout integrated circuit in combination with a detector array. The readout circuit includes unit cell electronics, orthogonal transfer structures, and data handling structures. The unit cell electronics include an analog to digital converter. Orthogonal transfer structures enable the orthogonal transfer of data among the unit cells. Data handling structures may be configured to operate the digital focal plane array as a data encryptor/decipherer. Data encrypted and deciphered by the digital focal plane array need not be image data.
    Type: Application
    Filed: June 7, 2019
    Publication date: May 7, 2020
    Inventors: Michael W. KELLY, Brian TYRRELL, Curtis COLONERO, Robert BERGER, Kenneth SCHULTZ, James WEY, Daniel MOONEY, Lawrence M. CANDELL
  • Patent number: 10362254
    Abstract: A digital focal plane array includes an all-digital readout integrated circuit in combination with a detector array. The readout circuit includes unit cell electronics, orthogonal transfer structures, and data handling structures. The unit cell electronics include an analog to digital converter. Orthogonal transfer structures enable the orthogonal transfer of data among the unit cells. Data handling structures may be configured to operate the digital focal plane array as a data encryptor/decipherer. Data encrypted and deciphered by the digital focal plane array need not be image data.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: July 23, 2019
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Michael Kelly, Brian Tyrrell, Curtis Colonero, Robert Berger, Kenneth Schultz, James Wey, Daniel Mooney, Lawrence Candell
  • Publication number: 20190075264
    Abstract: When imaging bright objects, a conventional detector array can saturate, making it difficult to produce an image with a dynamic range that equals the scene's dynamic range. Conversely, a digital focal plane array (DFPA) with one or more m-bit counters can produce an image whose dynamic range is greater than the native dynamic range. In one example, the DFPA acquires a first image over a relatively brief integration period at a relatively low gain setting. The DFPA then acquires a second image over longer integration period and/or a higher gain setting. During this second integration period, counters may roll over, possibly several times, to capture a residue modulus 2m of the number of counts (as opposed to the actual number of counts). A processor in or coupled to the DFPA generates a high-dynamic range image based on the first image and the residues modulus 2m.
    Type: Application
    Filed: August 14, 2018
    Publication date: March 7, 2019
    Inventors: Michael W. Kelly, Megan H. Blackwell, Curtis B. Colonero, James Wey, Christopher David, Justin Baker, Joseph Costa
  • Patent number: 10079984
    Abstract: When imaging bright objects, a conventional detector array can saturate, making it difficult to produce an image with a dynamic range that equals the scene's dynamic range. Conversely, a digital focal plane array (DFPA) with one or more m-bit counters can produce an image whose dynamic range is greater than the native dynamic range. In one example, the DFPA acquires a first image over a relatively brief integration period at a relatively low gain setting. The DFPA then acquires a second image over longer integration period and/or a higher gain setting. During this second integration period, counters may roll over, possibly several times, to capture a residue modulus 2m of the number of counts (as opposed to the actual number of counts). A processor in or coupled to the DFPA generates a high-dynamic range image based on the first image and the residues modulus 2m.
    Type: Grant
    Filed: March 20, 2017
    Date of Patent: September 18, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Michael W. Kelly, Megan H. Blackwell, Curtis B. Colonero, James Wey, Christopher David, Justin Baker, Joseph Costa
  • Publication number: 20170208274
    Abstract: When imaging bright objects, a conventional detector array can saturate, making it difficult to produce an image with a dynamic range that equals the scene's dynamic range. Conversely, a digital focal plane array (DFPA) with one or more m-bit counters can produce an image whose dynamic range is greater than the native dynamic range. In one example, the DFPA acquires a first image over a relatively brief integration period at a relatively low gain setting. The DFPA then acquires a second image over longer integration period and/or a higher gain setting. During this second integration period, counters may roll over, possibly several times, to capture a residue modulus 2m of the number of counts (as opposed to the actual number of counts). A processor in or coupled to the DFPA generates a high-dynamic range image based on the first image and the residues modulus 2m.
    Type: Application
    Filed: March 20, 2017
    Publication date: July 20, 2017
    Inventors: Michael W. Kelly, Megan H. Blackwell, Curtis B. Colonero, James Wey, Christopher David, Justin Baker, Joseph Costa
  • Patent number: 9615038
    Abstract: When imaging bright objects, a conventional detector array can saturate, making it difficult to produce an image with a dynamic range that equals the scene's dynamic range. Conversely, a digital focal plane array (DFPA) with one or more m-bit counters can produce an image whose dynamic range is greater than the native dynamic range. In one example, the DFPA acquires a first image over a relatively brief integration period at a relatively low gain setting. The DFPA then acquires a second image over longer integration period and/or a higher gain setting. During this second integration period, counters may roll over, possibly several times, to capture a residue modulus 2m of the number of counts (as opposed to the actual number of counts). A processor in or coupled to the DFPA generates a high-dynamic range image based on the first image and the residues modulus 2m.
    Type: Grant
    Filed: January 14, 2016
    Date of Patent: April 4, 2017
    Assignee: MASSACHUSETTS INSTITUTE OF TECHNOLOGY
    Inventors: Michael W. Kelly, Megan H. Blackwell, Curtis B. Colonero, James Wey, Christopher David, Justin Baker, Joseph Costa
  • Publication number: 20170026603
    Abstract: A digital focal plane array includes an all-digital readout integrated circuit in combination with a detector array. The readout circuit includes unit cell electronics, orthogonal transfer structures, and data handling structures. The unit cell electronics include an analog to digital converter. Orthogonal transfer structures enable the orthogonal transfer of data among the unit cells. Data handling structures may be configured to operate the digital focal plane array as a data encryptor/decipherer. Data encrypted and deciphered by the digital focal plane array need not be image data.
    Type: Application
    Filed: October 7, 2016
    Publication date: January 26, 2017
    Inventors: MICHAEL KELLY, BRIAN TYRRELL, CURTIS COLONERO, ROBERT BERGER, KENNETH SCHULTZ, JAMES WEY, DANIEL MOONEY, LAWRENCE CANDELL
  • Patent number: 9491389
    Abstract: A digital focal plane array includes an all-digital readout integrated circuit in combination with a detector array. The readout circuit includes unit cell electronics, orthogonal transfer structures, and data handling structures. The unit cell electronics include an analog to digital converter. Orthogonal transfer structures enable the orthogonal transfer of data among the unit cells. Data handling structures may be configured to operate the digital focal plane array as a data encryptor/decipherer. Data encrypted and deciphered by the digital focal plane array need not be image data.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: November 8, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Michael Kelly, Brian Tyrrell, Curtis Colonero, Robert Berger, Kenneth Schultz, James Wey, Daniel Mooney, Lawrence Candell
  • Publication number: 20160134821
    Abstract: When imaging bright objects, a conventional detector array can saturate, making it difficult to produce an image with a dynamic range that equals the scene's dynamic range. Conversely, a digital focal plane array (DFPA) with one or more m-bit counters can produce an image whose dynamic range is greater than the native dynamic range. In one example, the DFPA acquires a first image over a relatively brief integration period at a relatively low gain setting. The DFPA then acquires a second image over longer integration period and/or a higher gain setting. During this second integration period, counters may roll over, possibly several times, to capture a residue modulus 2m of the number of counts (as opposed to the actual number of counts). A processor in or coupled to the DFPA generates a high-dynamic range image based on the first image and the residues modulus 2m.
    Type: Application
    Filed: January 14, 2016
    Publication date: May 12, 2016
    Inventors: Michael W. Kelly, Megan H. Blackwell, Curtis B. Colonero, James Wey, Christopher David, Justin Baker, Joseph Costa
  • Patent number: 9270895
    Abstract: When imaging bright objects, a conventional detector array can saturate, making it difficult to produce an image with a dynamic range that equals the scene's dynamic range. Conversely, a digital focal plane array (DFPA) with one or more m-bit counters can produce an image whose dynamic range is greater than the native dynamic range. In one example, the DFPA acquires a first image over a relatively brief integration period at a relatively low gain setting. The DFPA then acquires a second image over longer integration period and/or a higher gain setting. During this second integration period, counters may roll over, possibly several times, to capture a residue modulus m of the number of counts (as opposed to the actual number of counts). A processor in or coupled to the DFPA generates a high-dynamic range image based on the first image and the residues modulus m.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: February 23, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: Michael W. Kelly, Megan H. Blackwell, Curtis B. Colonero, James Wey, Christopher David, Justin Baker, Joseph Costa
  • Publication number: 20150036005
    Abstract: When imaging bright objects, a conventional detector array can saturate, making it difficult to produce an image with a dynamic range that equals the scene's dynamic range. Conversely, a digital focal plane array (DFPA) with one or more m-bit counters can produce an image whose dynamic range is greater than the native dynamic range. In one example, the DFPA acquires a first image over a relatively brief integration period at a relatively low gain setting. The DFPA then acquires a second image over longer integration period and/or a higher gain setting. During this second integration period, counters may roll over, possibly several times, to capture a residue modulus m of the number of counts (as opposed to the actual number of counts). A processor in or coupled to the DFPA generates a high-dynamic range image based on the first image and the residues modulus m.
    Type: Application
    Filed: April 25, 2014
    Publication date: February 5, 2015
    Inventors: MICHAEL W. KELLY, MEGAN H. BLACKWELL, CURTIS B. COLONERO, JAMES WEY, CHRISTOPHER DAVID, JUSTIN BAKER, JOSEPH COSTA
  • Publication number: 20140197303
    Abstract: A digital focal plane array includes an all-digital readout integrated circuit in combination with a detector array. The readout circuit includes unit cell electronics, orthogonal transfer structures, and data handling structures. The unit cell electronics include an analog to digital converter. Orthogonal transfer structures enable the orthogonal transfer of data among the unit cells. Data handling structures may be configured to operate the digital focal plane array as a data encryptor/decipherer. Data encrypted and deciphered by the digital focal plane array need not be image data.
    Type: Application
    Filed: March 21, 2014
    Publication date: July 17, 2014
    Inventors: MICHAEL KELLY, BRIAN TYRRELL, CURTIS COLONERO, ROBERT BERGER, KENNETH SCHULTZ, JAMES WEY, DANIEL MOONEY, LAWRENCE CANDELL
  • Patent number: 8692176
    Abstract: A digital focal plane array includes an all-digital readout integrated circuit in combination with a detector array. The readout circuit includes unit cell electronics, orthogonal transfer structures, and data handling structures. The unit cell electronics include an analog to digital converter. Orthogonal transfer structures enable the orthogonal transfer of data among the unit cells. Data handling structures may be configured to operate the digital focal plane array as a data encryptor/decipherer. Data encrypted and deciphered by the digital focal plane array need not be image data.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: April 8, 2014
    Inventors: Michael Kelly, Brian Tyrrell, Curtis Colonero, Robert Berger, Kenneth Schultz, James Wey, Daniel Mooney, Lawrence Candell
  • Publication number: 20120138774
    Abstract: A digital focal plane array includes an all-digital readout integrated circuit in combination with a detector array. The readout circuit includes unit cell electronics, orthogonal transfer structures, and data handling structures. The unit cell electronics include an analog to digital converter. Orthogonal transfer structures enable the orthogonal transfer of data among the unit cells. Data handling structures may be configured to operate the digital focal plane array as a data encryptor/decipherer. Data encrypted and deciphered by the digital focal plane array need not be image data.
    Type: Application
    Filed: November 18, 2011
    Publication date: June 7, 2012
    Inventors: Michael Kelly, Brian Tyrrell, Curtis Colonero, Robert Berger, Kenneth Schultz, James Wey, Daniel Mooney, Lawrence Candell