Patents by Inventor Jamu Alford

Jamu Alford has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11307272
    Abstract: A magnetic field measurement system that includes at least one magnetometer; at least one magnetic field generator; a processor coupled to the at least one magnetometer and the at least one magnetic field generator and configured to: measure an ambient background magnetic field using at least one of the at least one magnetometer in a first mode selected from a scalar mode or a vector mode; generate, in response to the measurement of the ambient background magnetic field, a compensation field using the at least one magnetic field generator; and measure a target magnetic field using at least one of the at least one magnetometer in a spin exchange relaxation free (SERF) mode which is different from the first mode.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: April 19, 2022
    Assignee: HI LLC
    Inventors: Jamu Alford, Ricardo Jiménez-Martinez
  • Patent number: 11294008
    Abstract: A magnetic field measurement system for measurement of weak magnetic field signals or a wearable assembly includes at least one magnetometer and a shield disposed around the magnetometer. The shield includes a first portion configured for positioning between the at least one magnetometer and a source of the weak magnetic field signals. The first portion is made of an amplitude-selective magnetic shield (ASMS) that preferentially passes magnetic fields having a magnetic field amplitude below a threshold (for example, 500 nT or less) and shields magnetic fields having a larger magnetic field amplitude.
    Type: Grant
    Filed: January 13, 2020
    Date of Patent: April 5, 2022
    Assignee: HI LLC
    Inventor: Jamu Alford
  • Patent number: 11293999
    Abstract: A magnetic field generator includes a first planar substrate, a second planar substrate positioned opposite to the first planar substrate and separated from the first planar substrate by a gap, a first wiring set on the first planar substrate, a second wiring set on the second planar substrate, and one or more interconnects between the first planar substrate and the second planar substrate. The one or more interconnects electrically connect the first wiring set with the second wiring set to form a continuous electrical path. The continuous electrical path forms a conductive winding configured to generate, when supplied with a drive current, a first component of a compensation magnetic field configured to actively shield a magnetic field sensing region located in the gap from ambient background magnetic fields along a first axis that is substantially parallel to the first planar substrate and the second planar substrate.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: April 5, 2022
    Assignee: HI LLC
    Inventors: Jamu Alford, Michael Henninger, Stephen Garber, Jeffery Kang Gormley, Dakota Blue Decker, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman, Benjamin Siepser
  • Patent number: 11291370
    Abstract: Disclosed herein are devices and methods for modifying a conventional imager to have functional features similar to that of a lock-in camera. Optical mask devices are configured to be coupled to conventional imager sensors and the configuration of the mask devices can be adjusted to acquire image data in rapid succession. One variation of an optical mask device comprises a substrate comprising a pattern of light-blocking and light-transmitting regions and an attachment structure for coupling the optical mask device to the imager. The substrate is configured to adjust the position of the light-blocking regions and light-transmitting regions relative to the light-sensing region of the imager based on a set of one or more predetermined substrate configurations. In some variations, the mask device and/or the imager sensor may be mechanically moved relative to each other based on the set of one or more predetermined substrate configurations.
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: April 5, 2022
    Assignee: HI LLC
    Inventors: Jamu Alford, Adam Marblestone
  • Patent number: 11262420
    Abstract: A magnetometer can include a single, integrated, unitary structure that has a gas cell defining a cavity having a vapor or vaporizable material disposed therein, a collimating element coupled to the gas cell and configured for collimating light directed toward the gas cell, and a lens element coupled the gas cell and configured for redirecting at least a portion of light that has passed through the gas cell. Additionally or alternatively, a gas cell of a magnetometer may be made of sapphire.
    Type: Grant
    Filed: May 21, 2019
    Date of Patent: March 1, 2022
    Assignee: HI LLC
    Inventors: Anthony Zorzos, Jamu Alford, Ricardo Jiménez-Martínez
  • Patent number: 11206985
    Abstract: A non-invasive optical detection system and method are provided. Sample light is delivered into a target volume of interest, whereby the sample light is scattered by the target volume of interest, resulting in a sample light pattern that exits the anatomical structure. Reference light is combined with the sample light pattern to generate at least one interference light pattern, each of which may have a time varying interference component that integrates to a first value in the absence of the physiological event, and that integrates to a second greater value in the presence of the physiological event. Intensities of spatial components of each interference light pattern are detected during a measurement period. A function of the detected spatial component intensities of the interference light pattern(s) is analyzed, and a presence of the physiological event in the target volume of interest is determined based on the analysis.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: December 28, 2021
    Assignee: HI LLC
    Inventors: Jamu Alford, Adam Marblestone
  • Publication number: 20210389388
    Abstract: An exemplary magnetic field measurement system includes a wearable sensor unit and a single controller. The wearable sensor unit includes a plurality of magnetometers. The single controller is configured to generate a single clock signal and use the single clock signal to drive one or more components within the magnetometers.
    Type: Application
    Filed: August 26, 2021
    Publication date: December 16, 2021
    Inventors: Stephen Garber, Teague Lasser, Benjamin Siepser, Jamu Alford, Dakota Blue Decker, Jeffery Kang Gormley, Michael Henninger, Scott Michael Homan, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman
  • Publication number: 20210389389
    Abstract: An exemplary controller may include a single clock source configured to generate a single clock signal used to drive one or more components within a plurality of magnetometers and a plurality of differential signal measurement circuits configured to measure current output by a photodetector of each of the plurality of magnetometers.
    Type: Application
    Filed: August 26, 2021
    Publication date: December 16, 2021
    Inventors: Stephen Garber, Jerry Leung, Ethan Pratt, Hooman Mohseni, Jamu Alford, Dakota Blue Decker, Jeffery Kang Gormley, Michael Henninger, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Scott Jeremy Seidman, Benjamin Siepser
  • Publication number: 20210389390
    Abstract: An exemplary magnetic field measurement system includes a wearable sensor unit that includes a magnetometer and a twisted pair cable interface assembly electrically connected to the magnetometer.
    Type: Application
    Filed: August 26, 2021
    Publication date: December 16, 2021
    Inventors: Stephen Garber, Jamu Alford, Michael Henninger, Jeffery Kang Gormley, Dakota Blue Decker, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman, Benjamin Siepser
  • Publication number: 20210383277
    Abstract: A system for training a neurome that emulates a brain of a user comprises a non-invasive brain interface assembly configured for detecting neural activity of the user in response to analog instances of a plurality of stimuli peripherally input into the brain of the user from at least one source of content, memory configured for storing a neurome configured for outputting a plurality of determined brain states of an avatar in response to inputs of the digital instances of the plurality of stimuli, and a neurome training processor configured for determining a plurality of brain states of the user based on the detected neural activity of the user, and modifying the neurome based on the plurality of determined brain states of the user and the plurality of determined brain states of the avatar.
    Type: Application
    Filed: August 20, 2021
    Publication date: December 9, 2021
    Applicant: HI LLC
    Inventors: Bryan Johnson, Ethan Pratt, Jamu Alford, Husam Katnani, Julian Kates-Harbeck, Ryan Field, Gabriel Lerner, Antonio H. Lara
  • Publication number: 20210369201
    Abstract: A magnetic field recording system includes a headgear to be placed on a user; optically pumped magnetometers (OPMs) disposed in or on the headgear to detect magnetic fields; at least two sensing modalities selected from the following: i) a magnetic sensing modality, ii) an optical sensing modality, or iii) an inertial sensing modality; and a tracking unit configured to receive, from each of the at least two sensing modalities, a corresponding magnetic data stream, optical data stream, or inertial data stream and to track a position or orientation of the headgear or user; and a system controller configured to control operation of the OPMs and to receive, from the tracking unit, the position or orientation of the headgear or user.
    Type: Application
    Filed: May 24, 2021
    Publication date: December 2, 2021
    Inventors: Ricardo Jiménez-Martínez, Jamu Alford, Geoffrey Iwata, Ethan Pratt
  • Publication number: 20210369165
    Abstract: A magnetocardiography (MCG) system includes a passively shielded enclosure having walls defining the passively shielded enclosure, each of the walls including passive magnetic shielding material to reduce an ambient background magnetic field within the passively shielded enclosure; an MCG measurement device including optically pumped magnetometers (OPMs); and active shield coils within the passively shielded enclosure and stationary relative to the passively shielded enclosure and the MCG measurement device, wherein the active shield coils are configured to further reduce the ambient background magnetic field within a user area of the passively shielded enclosure.
    Type: Application
    Filed: May 24, 2021
    Publication date: December 2, 2021
    Inventors: Jamu Alford, Ethan Pratt, Micah Ledbetter, Ricardo Jiménez-Martínez
  • Publication number: 20210373092
    Abstract: A magnetic field recording system includes a headgear for a user; optically pumped magnetometers (OPMs) disposed in or on the headgear to detect magnetic fields and, in response to the detection, produce magnetic field data; at least one sensing modality including an optical sensing modality having at least one light source and at least one camera or light detector to receive light reflected or directed from the user and to produce an optical data stream; a tracking unit to receive the optical data stream and track a position or orientation of the headgear or user; a system controller to control operation of the OPMs and receive, from the tracking unit, the position or orientation of the headgear or user; and a processor to receive the optical data stream and the magnetic field data from the OPMs and analyze the magnetic field data using the optical data stream for validation.
    Type: Application
    Filed: May 24, 2021
    Publication date: December 2, 2021
    Inventors: Geoffrey Iwata, Ricardo Jiménez-Martínez, Jamu Alford
  • Publication number: 20210369166
    Abstract: A shielding arrangement for a magnetoencephalography (MEG) system includes a passively shielded enclosure having a plurality of walls defining the passively shielded enclosure, each of the plurality of walls including passive magnetic shielding material to reduce an ambient background magnetic field within the passively shielded enclosure; a vestibular wall extending from a first vertical wall to define, and at least partially separate, a vestibular area of the passively shielded enclosure adjacent the doorway and a user area of the passively shielded enclosure; and active shield coils distributed within the passively shielded enclosure and configured to further reduce the ambient background magnetic field within the user area of the passively shielded enclosure.
    Type: Application
    Filed: May 24, 2021
    Publication date: December 2, 2021
    Inventors: Jamu Alford, Micah Ledbetter, Ricardo Jiménez-Martínez, Ethan Pratt
  • Patent number: 11167154
    Abstract: A system for use in managing a neuromodulation therapy includes an ultrasound transducer array controlled by a control unit to deliver ultrasound waveforms for causing modulation of neural tissue in a patient. The system acquires data indicating a response to the modulation, analyzes the acquired data to determine correlation data between a response to the modulation and an ultrasound control parameter, and reports the correlation data to enable identification of at least one therapy parameter to be used to deliver a neuromodulation therapy to the patient by a therapy delivery system.
    Type: Grant
    Filed: January 24, 2013
    Date of Patent: November 9, 2021
    Assignee: Medtronic, Inc.
    Inventors: Jamu Alford, Steven M. Goetz, Lothar Krinke, Mark S. Lent, Erik R. Scott, Xuan K. Wei, John D. Welter
  • Patent number: 11131724
    Abstract: An exemplary magnetic field measurement system includes a wearable sensor unit and a controller. The wearable sensor unit includes 1) a magnetometer comprising a photodetector and 2) a magnetic field generator configured to generate a compensation magnetic field configured to actively shield the magnetometer from ambient background magnetic fields. The controller is configured to interface with the magnetometer and the magnetic field generator and includes a differential signal measurement circuit configured to measure current output by the photodetector.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: September 28, 2021
    Assignee: HI LLC
    Inventors: Stephen Garber, Jerry Leung, Ethan Pratt, Hooman Mohseni, Jamu Alford, Dakota Blue Decker, Jeffery Kang Gormley, Michael Henninger, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Scott Jeremy Seidman, Benjamin Siepser
  • Patent number: 11131723
    Abstract: An exemplary magnetic field measurement system includes a wearable sensor unit and a single controller. The wearable sensor unit includes a plurality of magnetometers and a magnetic field generator configured to generate a compensation magnetic field configured to actively shield the magnetometers from ambient background magnetic fields. The single controller is configured to interface with the magnetometers and the magnetic field generator.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: September 28, 2021
    Assignee: HI LLC
    Inventors: Stephen Garber, Teague Lasser, Benjamin Siepser, Jamu Alford, Dakota Blue Decker, Jeffery Kang Gormley, Michael Henninger, Scott Michael Homan, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman
  • Patent number: 11131725
    Abstract: An exemplary magnetic field measurement system includes a wearable sensor unit that includes a magnetometer, a magnetic field generator configured to generate a compensation magnetic field configured to actively shield the magnetometer from ambient background magnetic fields, a twisted pair cable interface assembly electrically connected to the magnetometer, and a coaxial cable interface assembly electrically connected to the magnetic field generator.
    Type: Grant
    Filed: April 30, 2020
    Date of Patent: September 28, 2021
    Assignee: HI LLC
    Inventors: Stephen Garber, Jamu Alford, Michael Henninger, Jeffery Kang Gormley, Dakota Blue Decker, Scott Michael Homan, Teague Lasser, Micah Ledbetter, Jerry Leung, Hooman Mohseni, Ethan Pratt, Scott Jeremy Seidman, Benjamin Siepser
  • Patent number: 11132625
    Abstract: A system for training a neurome that emulates a brain of a user comprises a non-invasive brain interface assembly configured for detecting neural activity of the user in response to analog instances of a plurality of stimuli peripherally input into the brain of the user from at least one source of content, memory configured for storing a neurome configured for outputting a plurality of determined brain states of an avatar in response to inputs of the digital instances of the plurality of stimuli, and a neurome training processor configured for determining a plurality of brain states of the user based on the detected neural activity of the user, and modifying the neurome based on the plurality of determined brain states of the user and the plurality of determined brain states of the avatar.
    Type: Grant
    Filed: March 1, 2021
    Date of Patent: September 28, 2021
    Assignee: HI LLC
    Inventors: Bryan Johnson, Ethan Pratt, Jamu Alford, Husam Katnani, Julian Kates-Harbeck, Ryan Field, Gabriel Lerner, Antonio H. Lara
  • Publication number: 20210294884
    Abstract: An authentication system comprises a brain-computer interface (BCI) configured for detecting neural activity in a brain of a subject in response to the subject performing a repeatable mental task, and outputting neural data representative of the detected neural activity. The authentication system further comprises a computer configured for acquiring the neural data output by the BCI while the subject is performing the repeatable mental task, and generating an authorization request containing the neural data. The authentication system further comprises an authentication processor configured for acquiring the authorization request containing the neural data from the computer, authenticating the subject based on the acquired authorization request, and sending an authorization token to the computer.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 23, 2021
    Applicant: HI LLC
    Inventors: Teague Lasser, Gabriel Lerner, Benjamin Siepser, Jamu Alford, Julian Kates-Harbeck, Bryan Johnson