Patents by Inventor Jan Vetrovec

Jan Vetrovec has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050058173
    Abstract: A solid state laser module for amplification of laser radiation. The module includes a laser gain medium having a pair of generally parallel surfaces that form a disc-like shape, that receive and transmit laser radiation. At least one perimetral optical medium is disposed adjacent a peripheral edge of the laser gain medium and in optical communication therewith. A source of optical pump radiation directs optical pump radiation into the perimetral optical medium generally normal to the parallel surfaces and the perimetral optical medium transports the optical pump radiation into the laser gain medium to pump the laser gain medium to a laser transition level. Alternative embodiments include arrangements for directing cooling fluids between adjacently disposed laser gain media.
    Type: Application
    Filed: June 7, 2004
    Publication date: March 17, 2005
    Inventor: Jan Vetrovec
  • Publication number: 20050044862
    Abstract: An autonomous water source (AWS) for extracting water from ambient air and delivering it to a plant to support growth. The system is based on an adsorption-desorption-condensation (ADC) cycle using a sorption material to extract moisture from ambient air and condensing the water vapor driven off from the sorption material by subsequent heating and followed by condensation. Liquid condensate produced in this process on the condenser is collected and delivered by gravity to a plant to reduce thermal stress and to support growth. The invention provides a sustainable source of irrigation water for agriculture and forestry, including areas where no water resources exist or are not economically viable. It can be tailored in size, and therefore, output capacity, reflecting the desired water requirements of a particular application, and can be used to replace most agricultural situations now reliant on surface water drip feed systems.
    Type: Application
    Filed: May 4, 2004
    Publication date: March 3, 2005
    Inventors: Jan Vetrovec, Katerina Vetrovec
  • Publication number: 20040233960
    Abstract: Methods, systems and apparatus are provided for amplifying a source light in a solid state laser. An amplifier module for the solid state laser suitably includes a disk having two substantially parallel surfaces and an optical gain material. A number of diode bars are arranged about the perimeter of the disk and configured to provide optical pump radiation to the laser gain material in the disk. Each of the plurality of diode bars is spatially aligned with the disk in such a manner as to produce substantially uniform gain across the optical gain material. The fast axes of the diode bars maybe aligned to be parallel or orthogonal to the parallel surfaces of the disk, for example.
    Type: Application
    Filed: May 19, 2003
    Publication date: November 25, 2004
    Inventor: Jan Vetrovec
  • Patent number: 6810060
    Abstract: An apparatus and method for achieving ultrahigh-power output from a solid-state laser. The solid-state laser of the subject invention uses multiple disk-shaped laser gain media (subapertures) placed adjacent to each other to fill an optical aperture of an AMA module. In one preferred embodiment each of the laser gain media is provided with optical coatings for operation in the active mirror configuration. Furthermore, each of the laser gain media is hydrostatic pressure-clamped to a rigid, cooled substrate, which allows it to maintain a prescribed shape even when experiencing significant thermal load. A cooling medium can be provided to a heat exchanger internal to the substrate and/or flowed through the passages on the substrate surface, thereby directly cooling the laser gain medium.
    Type: Grant
    Filed: February 13, 2001
    Date of Patent: October 26, 2004
    Assignee: The Boeing Company
    Inventor: Jan Vetrovec
  • Patent number: 6776328
    Abstract: There are provided an apparatus and method for friction welding structural members. The apparatus includes a connected shank and probe. The probe defines an absorption surface and a cavity extending thereto. The absorption surface is configured to receive electromagnetic radiation from an electromagnetic radiation source such as a light source or RF generator. The radiation heats the probe, supplementing the heat generated by friction between the probe and the structural members, and thereby increasing the speed at which the probe can be used to frictionally weld the structural materials.
    Type: Grant
    Filed: September 17, 2002
    Date of Patent: August 17, 2004
    Assignee: The Boeing Company
    Inventors: Robert R. Rice, Jan Vetrovec
  • Publication number: 20040114657
    Abstract: A solid state laser module for amplification of laser radiation. The module includes a laser gain medium having a pair of generally parallel surfaces that form a disc-like shape, that receive and transmit laser radiation. At least one undoped optical medium is disposed adjacent a peripheral edge of the laser gain medium and in optical communication therewith. A source of optical pump radiation directs optical pump radiation into the undoped optical medium generally normal to the parallel surfaces and the undoped optical medium transports the optical pump radiation into the laser gain medium to pump the laser gain medium to a laser transition level. Alternative embodiments include arrangements for directing cooling fluids between adjacently disposed laser gain media.
    Type: Application
    Filed: September 12, 2003
    Publication date: June 17, 2004
    Inventor: Jan Vetrovec
  • Publication number: 20040050906
    Abstract: There are provided an apparatus and method for friction welding structural members. The apparatus includes a connected shank and probe. The probe defines an absorption surface and a cavity extending thereto. The absorption surface is configured to receive electromagnetic radiation from an electromagnetic radiation source such as a light source or RF generator. The radiation heats the probe, supplementing the heat generated by friction between the probe and the structural members, and thereby increasing the speed at which the probe can be used to frictionally weld the structural materials.
    Type: Application
    Filed: September 17, 2002
    Publication date: March 18, 2004
    Applicant: The Boeing Company
    Inventors: Robert R. Rice, Jan Vetrovec
  • Patent number: 6686077
    Abstract: A fuel cell device for generation of electricity from a polar oxidizer liquid and a non-polar fuel fluid includes a cathode in contact with the polar oxidizer liquid; an anode in contact with the non-polar fuel fluid; and a separator for separating the polar oxidizer liquid from the non-polar fuel fluid. The separator is made from material that is lyophobic with respect to the oxidizer liquid, and has a plurality of apertures, which are appropriately sized and spaced to form a meniscus in each aperture. The meniscus forms a liquid heterointerface between the conductive polar oxidizer liquid and the non-polar fuel fluid providing a controlled contact surface for oxidation processes. The fuel side of the separator may be coated with a conductive material to form the anode, in electric contact with the perimeter of the meniscus, and the cathode may be formed on the oxidizer side of the separator.
    Type: Grant
    Filed: November 21, 2001
    Date of Patent: February 3, 2004
    Assignee: The Boeing Company
    Inventors: Robert R. Rice, Jan Vetrovec
  • Patent number: 6650681
    Abstract: A sealed exhaust chemical oxygen-iodine laser (SECOIL) employing a sealed exhaust system (SES) is described. The SES is capable of selectively condensing and cryosorbing various chemical species contained in the laser-exhaust gas. Additionally, a condensable diluent is employed. The SES is configured so that the diluent and other condensables can be removed in a first stage with a high temperature condensing bed, while the oxygen can then be removed in a second stage in a low temperature sorbing bed. The result is a reduction in the weight, volume, and power consumption of the SECOIL system, especially the SES component thereof.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: November 18, 2003
    Assignee: The Boeing Company
    Inventors: Alan Zachary Ullman, Jan Vetrovec, Arthur H. Bauer, William E. McDermott
  • Publication number: 20030198265
    Abstract: An apparatus and method for achieving a near diffraction-limited, high-average power output from a solid-state laser oscillator are provided. The solid-state laser uses multiple disk-shaped laser gain media having a large optical aperture placed in an unstable resonator. The laser gain media is provided with optical coatings for operation in the active mirror configuration and is attached to a rigid, cooled substrate, which allows it to maintain a prescribed shape even when experiencing significant thermal load. The resonator is configured so as to preferentially support low order optical modes with transverse dimensions sufficiently large to efficiently fill the gain media apertures. Resonator configurations capable of producing standing wave or traveling wave optical fields are disclosed. The resonator may include means for intracavity correction of an optical phase front by adaptive optics.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 23, 2003
    Inventor: Jan Vetrovec
  • Publication number: 20030198264
    Abstract: A solid-state laser system includes a solid-state laser having a laser gain medium and at least one pumping diode. The system also includes a thermal management system capable of placing a coolant in thermal communication with the solid-state laser such that the coolant can carry heat away from the solid-state laser. The thermal management system is then capable of rejecting the heat carried away by the coolant to a fluid at an ambient temperature, where the coolant can be at a temperature between 40° C. and 80° C. when the thermal management system rejects the heat. Advantageously, the thermal management system of the present invention can include reject the heat to a fluid comprising, for example, air or water. As such, the thermal management system does not require separate cooling of the fluid carrying the heat away from the coolant.
    Type: Application
    Filed: April 18, 2002
    Publication date: October 23, 2003
    Applicant: The Boeing Company
    Inventors: Jan Vetrovec, Robert R. Rice
  • Patent number: 6625193
    Abstract: Apparatus and method for achieving improved performance in a solid-state laser. The solid-state laser apparatus preferably uses a laser gain medium in the shape of a disk wherein optical pump radiation is injected into the peripheral edge of the disk. In the preferred embodiment the laser gain medium is provided with optical coatings for operation in the active mirror configuration. Furthermore, the laser gain medium is pressure-clamped to a rigid, cooled substrate, which allows it to maintain a prescribed shape even when experiencing significant thermal load. A cooling medium can be provided to a heat exchanger internal to the substrate and/or flowed through the passages on the substrate surface, thereby directly cooling the laser gain medium. Sources of optical pump radiation are placed around the perimeter of the gain medium. Tapered ducts may be disposed between the sources and the gain medium for the purpose of concentrating optical pump radiation.
    Type: Grant
    Filed: January 22, 2001
    Date of Patent: September 23, 2003
    Assignee: The Boeing Company
    Inventor: Jan Vetrovec
  • Patent number: 6621848
    Abstract: A sealed exhaust chemical oxygen-iodine laser system is described, wherein the sealed exhaust system includes an adsorption bed for adsorbing sorbable material contained in the laser exhaust gas, and a temperature control assembly for controlling the temperature of the incoming laser exhaust gas and the adsorbent media of the adsorption bed.
    Type: Grant
    Filed: April 25, 2000
    Date of Patent: September 16, 2003
    Assignee: The Boeing Company
    Inventors: Alan Zachary Ullman, Jan Vetrovec, William E. McDermott
  • Patent number: 6603793
    Abstract: An apparatus and method for achieving a near diffraction-limited, high-average power output from a solid-state laser oscillator are provided. The solid-state laser uses multiple disk-shaped laser gain media having a large optical aperture placed in an unstable resonator. The laser gain media is provided with optical coatings for operation in the active mirror configuration and is attached to a rigid, cooled substrate, which allows it to maintain a prescribed shape even when experiencing significant thermal load. The resonator is configured so as to preferentially support low order optical modes with transverse dimensions sufficiently large to efficiently fill the gain media apertures. Resonator configurations capable of producing standing wave or traveling wave optical fields are disclosed. The resonator may include means for intracavity correction of an optical phase front by adaptive optics.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: August 5, 2003
    Assignee: The Boeing Company
    Inventor: Jan Vetrovec
  • Publication number: 20030096150
    Abstract: A fuel cell device for generation of electricity from a polar oxidizer liquid and a non-polar fuel fluid includes a cathode in contact with the polar oxidizer liquid; an anode in contact with the non-polar fuel fluid; and a separator for separating the polar oxidizer liquid from the non-polar fuel fluid. The separator is made from material that is lyophobic with respect to the oxidizer liquid, and has a plurality of apertures, which are appropriately sized and spaced to form a meniscus in each aperture. The meniscus forms a liquid heterointerface between the conductive polar oxidizer liquid and the non-polar fuel fluid providing a controlled contact surface for oxidation processes. The fuel side of the separator may be coated with a conductive material to form the anode, in electric contact with the perimeter of the meniscus, and the cathode may be formed on the oxidizer side of the separator.
    Type: Application
    Filed: November 21, 2001
    Publication date: May 22, 2003
    Applicant: The Boeing Company
    Inventors: Robert R. Rice, Jan Vetrovec
  • Patent number: 6562225
    Abstract: A continuous use chemical oxygen iodine laser requires a continuous supply of basic hydrogen peroxide and chlorine to produce singlet delta oxygen for the laser. Regeneration of the spent basic hydrogen peroxide and chlorine with the input of oxygen and electricity can be generated on site or be obtained from a power grid. The regeneration of the spent basic hydrogen peroxide and chlorine makes continuous use of a chemical oxygen iodine laser possible without the constant resupply of basic hydrogen peroxide from an outside source.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: May 13, 2003
    Assignee: The Boeing Company
    Inventor: Jan Vetrovec
  • Publication number: 20030019757
    Abstract: A continuous use chemical oxygen iodine laser requires a continuous supply of basic hydrogen peroxide and chlorine to produce singlet delta oxygen for the laser. Regeneration of the spent basic hydrogen peroxide and chlorine with the input of oxygen and electricity can be generated on site or be obtained from a power grid. The regeneration of the spent basic hydrogen peroxide and chlorine makes continuous use of a chemical oxygen iodine laser possible without the constant resupply of basic hydrogen peroxide from an outside source.
    Type: Application
    Filed: January 25, 2002
    Publication date: January 30, 2003
    Inventor: Jan Vetrovec
  • Publication number: 20020172253
    Abstract: An apparatus and method for achieving a near diffraction-limited, high-average power output from a solid-state laser oscillator are provided. The solid-state laser uses multiple disk-shaped laser gain media having a large optical aperture placed in an unstable resonator. The laser gain media is provided with optical coatings for operation in the active mirror configuration and is attached to a rigid, cooled substrate, which allows it to maintain a prescribed shape even when experiencing significant thermal load. The resonator is configured so as to preferentially support low order optical modes with transverse dimensions sufficiently large to efficiently fill the gain media apertures. Resonator configurations capable of producing standing wave or traveling wave optical fields are disclosed. The resonator may include means for intracavity correction of an optical phase front by adaptive optics.
    Type: Application
    Filed: May 18, 2001
    Publication date: November 21, 2002
    Inventor: Jan Vetrovec
  • Publication number: 20020110164
    Abstract: An apparatus and method for achieving ultrahigh-power output from a solid-state laser. The solid-state laser of the subject invention uses multiple disk-shaped laser gain media (subapertures) placed adjacent to each other to fill an optical aperture of an AMA module. In one preferred embodiment each of the laser gain media is provided with optical coatings for operation in the active mirror configuration. Furthermore, each of the laser gain media is hydrostatic pressure-clamped to a rigid, cooled substrate, which allows it to maintain a prescribed shape even when experiencing significant thermal load. A cooling medium can be provided to a heat exchanger internal to the substrate and/or flowed through the passages on the substrate surface, thereby directly cooling the laser gain medium.
    Type: Application
    Filed: February 13, 2001
    Publication date: August 15, 2002
    Inventor: Jan Vetrovec
  • Publication number: 20020097769
    Abstract: Apparatus and method for achieving improved performance in a solid-state laser. The solid-state laser apparatus preferably uses a laser gain medium in the shape of a disk wherein optical pump radiation is injected into the peripheral edge of the disk. In the preferred embodiment the laser gain medium is provided with optical coatings for operation in the active mirror configuration. Furthermore, the laser gain medium is pressure-clamped to a rigid, cooled substrate, which allows it to maintain a prescribed shape even when experiencing significant thermal load. A cooling medium can be provided to a heat exchanger internal to the substrate and/or flowed through the passages on the substrate surface, thereby directly cooling the laser gain medium. Sources of optical pump radiation are placed around the perimeter of the gain medium. Tapered ducts may be disposed between the sources and the gain medium for the purpose of concentrating optical pump radiation.
    Type: Application
    Filed: January 22, 2001
    Publication date: July 25, 2002
    Inventor: Jan Vetrovec