Patents by Inventor Jane A. Yater

Jane A. Yater has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150069490
    Abstract: Methods and related structures are disclosed for forming contact landing regions in split-gate NVM (non-volatile memory) systems. A dummy select gate structure is formed while also forming select gates for split-gate NVM cells. A control gate layer is formed over the select gates and the dummy select gate structure, as well as an intervening charge storage layer. The control gate material will fill in gaps between the select gate material and the dummy select gate material. A non-patterned spacer etch is then used to etch the control gate layer to form a contact landing region associated with the dummy select gate structure while also forming spacer control gates for the split-gate NVM cells. The disclosed embodiments provide improved (e.g., more planar) contact landing regions without requiring additional processing steps and without increasing the pitch of the resulting NVM cell array.
    Type: Application
    Filed: September 10, 2013
    Publication date: March 12, 2015
    Inventors: Jane A. Yater, Cheong Min Hong, Sung-Taeg Kang
  • Patent number: 8969940
    Abstract: A process integration is disclosed for fabricating non-volatile memory (NVM) cells having patterned select gates (211, 213), charge storage layers (219), inlaid control gates (223, 224), and inlaid control gate contact regions (228).
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: March 3, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jane A Yater, Cheong Min Hong, Sung-Taeg Kang, Asanga H Perera
  • Publication number: 20150054050
    Abstract: A method of making a semiconductor structure includes forming a select gate and a charge storage layer in an NVM region. A control gate is formed by depositing a conformal layer followed by an etch back. A patterned etch results in leaving a portion of the charge storage layer over the select gate and under the control gate and to remove the charge storage layer from the logic region. A logic gate structure formed in a logic region has a metal work function surrounded by an insulating layer.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 26, 2015
    Inventors: ASANGA H. PERERA, Cheong Min Hong, Sung-Taeg Kang, Janes A. Yater
  • Publication number: 20150054044
    Abstract: A process integration is disclosed for fabricating non-volatile memory (NVM) cells (105-109, 113-115) on a first flash cell substrate area (111) which are encapsulated in one or more planar dielectric layers (116) prior to forming an elevated substrate (117) on a second CMOS transistor area (112) on which high-k metal gate electrodes (119-120, 122-126, 132, 134) are formed using a gate-last HKMG CMOS process flow without interfering with the operation or reliability of the NVM cells.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 26, 2015
    Applicant: Freescale Semiconductor, Inc
    Inventors: Asanga H. Perera, Sung-Taeg Kang, Jane A. Yater, Cheong Min Hong
  • Publication number: 20150054049
    Abstract: A method of making a semiconductor structure includes forming a select gate and a charge storage layer in an NVM region. A spacer select gate is formed by depositing a conformal layer followed by an etch back. A patterned etch results in leaving a portion of the charge storage layer over the select gate. A dummy gate structure formed in a logic region has a dummy gate surrounded by an insulating layer. Performing chemical polishing results in the top surface of the charge storage layer being coplanar with top surface of the dummy gate structure. Replacing a portion of the dummy gate structure with a metal logic gate which includes a further chemical mechanical polishing results in the top surface of the charge storage layer being coplanar with the metal logic gate.
    Type: Application
    Filed: August 21, 2013
    Publication date: February 26, 2015
    Inventors: Asanga H. PERERA, Cheong Min HONG, Sung-Taeg KANG, Byoung W. MIN, Jane A. YATER
  • Patent number: 8962416
    Abstract: A method of making a semiconductor structure uses a substrate having a background doping of a first type. A gate structure has a gate dielectric on the substrate and a select gate layer on the gate dielectric. Implanting is performed into a first portion of the substrate adjacent to a first end with dopants of a second type. The implanting is prior to any dopants being implanted into the background doping of the first portion which becomes a first doped region of the second type. An NVM gate structure has a select gate, a storage layer having a first portion over the first doped region, and a control gate over the storage layer. Implanting at a non-vertical angle with dopants of the first type forms a deep doped region under the select gate. Implanting with dopants of the second type forms a source/drain extension.
    Type: Grant
    Filed: July 30, 2013
    Date of Patent: February 24, 2015
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Brian A. Winstead, Cheong Min Hong, Sung-Taeg Kang, Konstantin V. Loiko, Jane A. Yater
  • Publication number: 20150035034
    Abstract: A method of making a semiconductor structure uses a substrate having a background doping of a first type. A gate structure has a gate dielectric on the substrate and a select gate layer on the gate dielectric. Implanting is performed into a first portion of the substrate adjacent to a first end with dopants of a second type. The implanting is prior to any dopants being implanted into the background doping of the first portion which becomes a first doped region of the second type. An NVM gate structure has a select gate, a storage layer having a first portion over the first doped region, and a control gate over the storage layer. Implanting at a non-vertical angle with dopants of the first type forms a deep doped region under the select gate. Implanting with dopants of the second type forms a source/drain extension.
    Type: Application
    Filed: July 30, 2013
    Publication date: February 5, 2015
    Inventors: BRIAN A. WINSTEAD, Cheong Min Hong, Sung-Taeg Kang, Konstantin V. Loiko, Jane A. Yater
  • Publication number: 20150001612
    Abstract: A method of making a semiconductor structure includes forming a select gate stack on a substrate. The substrate includes a non-volatile memory (NVM) region and a high voltage region. The select gate stack is formed in the NVM region. A charge storage layer is formed over the NVM region and the high voltage region of the substrate. The charge storage layer includes charge storage material between a bottom layer of dielectric material and a top layer of dielectric material. The charge storage material in the high voltage region is oxidized while the charge storage material in the NVM region remains unoxidized.
    Type: Application
    Filed: June 27, 2013
    Publication date: January 1, 2015
    Inventors: CHEONG MIN HONG, SUNG-TAEG KANG, JANE A. YATER
  • Patent number: 8901632
    Abstract: A method of making a semiconductor structure includes forming a select gate over a substrate in an NVM region and a first protection layer over a logic region. A control gate and a storage layer are formed over the substrate in the NVM region. The control gate has a top surface below a top surface of the select gate. The charge storage layer is under the control gate, along adjacent sidewalls of the select gate and control gate, and is partially over the top surface of the select gate. A second protection layer is formed over the NVM portion and the logic portion. The first and second protection layers are removed from the logic region. A portion of the second protection layer is left over the control gate and the select gate. A gate structure, formed over the logic region, has a high k dielectric and a metal gate.
    Type: Grant
    Filed: September 30, 2013
    Date of Patent: December 2, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Asanga H. Perera, Cheong Min Hong, Sung-Taeg Kang, Byoung W. Min, Jane A. Yater
  • Publication number: 20140319593
    Abstract: A split gate memory array includes a first row having memory cells; a second row having memory cells, wherein the second row is adjacent to the first row; and a plurality of segments. Each segment includes a first plurality of memory cells of the first row, a second plurality of memory cells of the second row, a first control gate portion which forms a control gate of each memory cell of the first plurality of memory cells, and a second control gate portion which forms a control gate of each memory cell of the second plurality of memory cells. The first control gate portion and the second control gate portion converge to a single control gate portion between neighboring segments of the plurality of segments.
    Type: Application
    Filed: April 30, 2013
    Publication date: October 30, 2014
    Inventors: Jane A. YATER, Cheong Min HONG, Sung-Taeg KANG, Ronald J. SYZDEK
  • Patent number: 8679912
    Abstract: A method for forming a semiconductor device includes forming a first plurality of nanocrystals over a surface of a substrate having a first region and a second region, wherein the first plurality of nanocrystals is formed in the first region and the second region and has a first density; and, after forming the first plurality of nanocrystals, forming a second plurality of nanocrystals over the surface of the substrate in the second region and not the first region, wherein the first plurality of nanocrystals together with the second plurality of nanocrystals in the second region result in a second density, wherein the second density is greater than the first density.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: March 25, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sung-Taeg Kang, Gowrishankar L. Chindalore, Brian A. Winstead, Jane A. Yater
  • Publication number: 20130193506
    Abstract: A method for forming a semiconductor device includes forming a first plurality of nanocrystals over a surface of a substrate having a first region and a second region, wherein the first plurality of nanocrystals is formed in the first region and the second region and has a first density; and, after forming the first plurality of nanocrystals, forming a second plurality of nanocrystals over the surface of the substrate in the second region and not the first region, wherein the first plurality of nanocrystals together with the second plurality of nanocrystals in the second region result in a second density, wherein the second density is greater than the first density.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 1, 2013
    Inventors: SUNG-TAEG KANG, GOWRISHANKAR L. CHINDALORE, BRIAN A. WINSTEAD, JANE A. YATER
  • Patent number: 8431471
    Abstract: A feature is formed in the NVM isolation region during the patterning and etching of an NVM device and a logic device such that the feature is of substantially equal height to the logic device and is well-defined so that it does not cause defect signals. A first conductive layer is formed over a substrate. The first conductive layer is patterned to expose at least a portion of the substrate in an NVM region and at least a portion of an isolation region. An NVM dielectric stack is formed over the first conductive layer, the exposed substrate, and the exposed isolation region, and a second conductive layer is formed over the NVM dielectric stack. The first and second conductive layers and the NVM dielectric stack are patterned to form a first gate and a second gate of an NVM cell in the NVM region and a feature over the isolation region.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: April 30, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Jane A. Yater, Sung-Taeg Kang, Mehul D. Shroff
  • Patent number: 8372699
    Abstract: A method for forming a semiconductor device includes forming a first semiconductor layer over a substrate, forming a first photoresist layer over the first semiconductor layer, and using only a first single mask patterning the first photoresist layer to form a first patterned photoresist layer. The method further includes using the first patterned photoresist layer etching the first semiconductor layer to form a select gate and forming a charge storage layer over the select gate and a portion of the substrate. The method further includes forming a second semiconductor layer over the charge storage layer, forming a second photoresist layer over the second semiconductor layer, and using only a second single mask patterning the second photoresist layer to form a second patterned photoresist layer. The method further includes forming a control gate by anisotropically etching the second semiconductor layer and then subsequently isotropically etching the second semiconductor layer.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: February 12, 2013
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sung-Taeg Kang, Jane A. Yater
  • Patent number: 8329544
    Abstract: A method is provided for forming a semiconductor device having nanocrystals. The method includes: forming a first insulating layer over a surface of a substrate; forming a first plurality of nanocrystals on the first insulating layer; implanting a first material into the first insulating layer; and annealing the first material to form a second plurality of nanocrystals in the first insulating layer. The method may be used to provide a charge storage layer for a non-volatile memory having a greater nanocrystal density.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: December 11, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sung-Taeg Kang, Jane A. Yater
  • Patent number: 8329543
    Abstract: A method is provided for forming a semiconductor device having nanocrystals. The method includes: providing a substrate; forming a first insulating layer over a surface of the substrate; forming a first plurality of nanocrystals on the first insulating layer; forming a second insulating layer over the first plurality of nanocrystals; implanting a first material into the second insulating layer; and annealing the first material to form a second plurality of nanocrystals in the second insulating layer. The method may be used to provide a charge storage layer for a non-volatile memory having a greater nanocrystal density.
    Type: Grant
    Filed: April 12, 2011
    Date of Patent: December 11, 2012
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Sung-Taeg Kang, Jane A. Yater
  • Publication number: 20120264277
    Abstract: A method is provided for forming a semiconductor device having nanocrystals. The method includes: providing a substrate; forming a first insulating layer over a surface of the substrate; forming a first plurality of nanocrystals on the first insulating layer; forming a second insulating layer over the first plurality of nanocrystals; implanting a first material into the second insulating layer; and annealing the first material to form a second plurality of nanocrystals in the second insulating layer. The method may be used to provide a charge storage layer for a non-volatile memory having a greater nanocrystal density.
    Type: Application
    Filed: April 12, 2011
    Publication date: October 18, 2012
    Inventors: Sung-Taeg Kang, Jane A. Yater
  • Publication number: 20120264282
    Abstract: A method is provided for forming a semiconductor device having nanocrystals. The method includes: forming a first insulating layer over a surface of a substrate; forming a first plurality of nanocrystals on the first insulating layer; implanting a first material into the first insulating layer; and annealing the first material to form a second plurality of nanocrystals in the first insulating layer. The method may be used to provide a charge storage layer for a non-volatile memory having a greater nanocrystal density.
    Type: Application
    Filed: April 12, 2011
    Publication date: October 18, 2012
    Inventors: Sung-Taeg Kang, Jane A. Yater
  • Publication number: 20120126309
    Abstract: A feature is formed in the NVM isolation region during the patterning and etching of an NVM device and a logic device such that the feature is of substantially equal height to the logic device and is well-defined so that it does not cause defect signals. A first conductive layer is formed over a substrate. The first conductive layer is patterned to expose at least a portion of the substrate in an NVM region and at least a portion of an isolation region. An NVM dielectric stack is formed over the first conductive layer, the exposed substrate, and the exposed isolation region, and a second conductive layer is formed over the NVM dielectric stack. The first and second conductive layers and the NVM dielectric stack are patterned to form a first gate and a second gate of an NVM cell in the NVM region and a feature over the isolation region.
    Type: Application
    Filed: November 22, 2010
    Publication date: May 24, 2012
    Inventors: JANE A. YATER, Sung-Taeg Kang, Mehul D. Shroff
  • Publication number: 20110207274
    Abstract: A method for forming a semiconductor device includes forming a first semiconductor layer over a substrate, forming a first photoresist layer over the first semiconductor layer, and using only a first single mask patterning the first photoresist layer to form a first patterned photoresist layer. The method further includes using the first patterned photoresist layer etching the first semiconductor layer to form a select gate and forming a charge storage layer over the select gate and a portion of the substrate. The method further includes forming a second semiconductor layer over the charge storage layer, forming a second photoresist layer over the second semiconductor layer, and using only a second single mask patterning the second photoresist layer to form a second patterned photoresist layer. The method further includes forming a control gate by anisotropically etching the second semiconductor layer and then subsequently isotropically etching the second semiconductor layer.
    Type: Application
    Filed: February 22, 2010
    Publication date: August 25, 2011
    Inventors: SUNG-TAEG KANG, Jane A. Yater